天津市七校重点中学2022-2023学年高三第二次调研数学试卷含解析.doc

上传人:lil****205 文档编号:87996889 上传时间:2023-04-19 格式:DOC 页数:19 大小:1.63MB
返回 下载 相关 举报
天津市七校重点中学2022-2023学年高三第二次调研数学试卷含解析.doc_第1页
第1页 / 共19页
天津市七校重点中学2022-2023学年高三第二次调研数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《天津市七校重点中学2022-2023学年高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《天津市七校重点中学2022-2023学年高三第二次调研数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD2设为自然对数的底数,函数,若,则( )ABCD3已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD4设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )ABCD15已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD26定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能7已知复数满足,则的最大值为( )ABCD68已知平面向量满足与的夹角为,且,则实数的值为( )ABC

3、D9若的二项式展开式中二项式系数的和为32,则正整数的值为( )A7B6C5D410若点是角的终边上一点,则( )ABCD11若(12ai)i1bi,其中a,bR,则|abi|()ABCD512设实数满足条件则的最大值为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13若奇函数满足,为R上的单调函数,对任意实数都有,当时,则_.14在数列中,已知,则数列的的前项和为_.15若函数的图像与直线的三个相邻交点的横坐标分别是,则实数的值为_16已知全集为R,集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,求证:(1);(2).18

4、(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查

5、,记选中的3人中了解新高考的人数为,求的分布列以及.19(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.20(12分)改革开放

6、年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中2

7、1(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x2|m)(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)2的解集是R,求m的取值范围22(10分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇

8、偶性的应用,属于基础题2、D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.3、B【解析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.4、C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选

9、C考点:1抛物线的简单几何性质;2均值不等式【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题5、B【解析】求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.6、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递

10、减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键7、B【解析】设,利用复数几何意义计算.【详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.8、D【解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.9、C【解析】由二项式系数性质,的展开式中所有二项式

11、系数和为计算【详解】的二项展开式中二项式系数和为,故选:C【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键10、A【解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解析】试题分析:由已知,2ai1bi,根据复数相等的充要条件,有a,b1所以|abi|,选C考点:复数的代数运算,复数相等的充要条件,复数的模12

12、、C【解析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,所以时,;由,所以,所以函数是以为周期的函数,又函数为奇函数,所以.故答案为:【点睛】本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.14、【解析】由已知

13、数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解【详解】解:由,得,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列,故答案为:【点睛】本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题15、4【解析】由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的16、【解析】先化简集合A,再求AB得解.【详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【点睛】本题主要

14、考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论【详解】(1),当且仅当a=b=c等号成立,;(2)由基本不等式,同理,当且仅当a=b=c等号成立【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立解题关键是发现基本不等式的形式,方法是综合法18、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】(1)分

15、别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.

16、所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.19、(1);(2)82,分布列见解析,【解析】(1)从20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典概型的概率计算公式计算即可;(2)平均数的估计值为各小矩形的组中值与其面积乘积的和;要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.【详解】(1)设从20人中任取3人恰有1人成绩“优秀”为事件,则,所以,恰有1人“优秀”的概率为.(2)组别分组频数频率120.01260.03380.04440.02,估计所有员工的平均分为82的可能取

17、值为0、1、2、3,随机选取1人是“优秀”的概率为,;的分布列为0123,数学期望.【点睛】本题考查古典概型的概率计算以及二项分布期望的问题,涉及到频率分布直方图、平均数的估计值等知识,是一道容易题.20、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解: 解得. 所以,该城市驾驶员交通安全意识强的概率 根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全

18、意识强安全意识不强合计男性女性合计 所以有的把握认为交通安全意识与性别有关. 由题意可知分数在,的分别为名和名, 所以分层抽取的人数分别为名和名, 设的为,的为,则基本事件空间为,共种, 设至少有人得分低于分的事件为,则事件包含的基本事件有,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.21、(1),(2) 【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x2|m+4解集是R,只需m+43,得出的范围.试题解析:(1)由题设知:|x+1|+|x2|7,不等式的解集是以下不等式组解集的并集:,或

19、,或,解得函数f(x)的定义域为(,3)(4,+)(2)不等式f(x)2即|x+1|+|x2|m+4,xR时,恒有|x+1|+|x2|(x+1)(x2)|=3,不等式|x+1|+|x2|m+4解集是R,m+43,m的取值范围是(,122、 (1);(2).【解析】(1)通过讨论的范围,分为,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以 综上所述,不等式解集为. (2)由,得,当时,恒成立,所以; 当时,. 因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁