《四川省阆中市2023年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省阆中市2023年中考数学考前最后一卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1下列式子一定成立的是()A2a+3a=6aBx8x2=x4CD(a2)3=2在0.3,3,0,这四个数中,最大的是()A0.3B3C0D3某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A在“石头、剪刀、布”的游戏中,小明随机出的是“剪
2、刀”B掷一枚质地均匀的正六面体骰子,向上一面的点数是4C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上4如图,在ABC中,DEBC,ADEEFC,ADBD53,CF6,则DE的长为( )A6B8C10D125下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()ABCD6下列运算正确的是()Aa3a2=a6Ba2=C32=D(a+2)(a2)=a2+47将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )ABCD8二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点
3、(1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个9如图,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()ABC10D10根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个
4、交点,且它们均在轴同侧D无交点二、填空题(本大题共6个小题,每小题3分,共18分)11一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为_.12一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为_13为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()ABCD14如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则AED
5、的周长为_cm.15已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.16如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BCAB,ABCD,AB=4,BD=2,tanBAC=3,则线段BC的长是_三、解答题(共8题,共72分)17(8分)(1)计算:(2)化简:18(8分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形19(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务
6、时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?20(8分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门分析认为,336w513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范
7、围所对应的月销售量P的最小值和最大值21(8分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?22(10分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.23(12分)解不等式组24某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元(1)若购进A,B两种花木刚好
8、用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.2、A
9、【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型3、B【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P0.17,计算四个选项的概率,约为0.17者即为正确答案【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,抛掷一枚均匀的硬币,前2次都正
10、面朝上,第3次正面仍朝上的概率是 ,故D选项错误,故选B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键4、C【解析】DEBC,ADE=B,AED=C,又ADE=EFC,B=EFC,ADEEFC,BDEF,四边形BFED是平行四边形,BD=EF,解得:DE=10.故选C.5、C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状选项C左视图与俯视图都是,故选C.6
11、、C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案【详解】A、a3a2=a5,故A选项错误;B、a2=,故B选项错误;C、32=,故C选项正确;D、(a+2)(a2)=a24,故D选项错误,故选C【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键7、A【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式【详解】抛物线y=x2的顶点坐标为(0,0),把点
12、(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1故选A8、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y
13、随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号
14、时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点;=b14ac0时,抛物线与x轴没有交点9、D【解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB=BP+PBPP,根据勾股定理得到PP=,求得2PD+PB4,于是得到结论【详解】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,=2,APDABP,BP=2PD,2PD+PB=BP+PBPP,PP
15、=,2PD+PB4,2PD+PB的最小值为4,故选D【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键10、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:根据题意可得:列表如下红1红2黄1黄2黄3红1红1
16、,红2红1,黄1红1,黄2红1,黄3红2红2,红1红2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键12、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛
17、:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错13、A【解析】该班男生有x人,女生有y人根据题意得:,故选D考点:由实际问题抽象出二元一次方程组14、7【解析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出ADE的周长=AC+AE【详解】折叠这个三角形点C落在AB边上的点E处,折痕为BD,BE=BC,DE=CD,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD
18、+AE,=AC+AE,=5+2,=7cm故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等15、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.16、6【解析】作DEAB,交BA的延长线于E,作CFAB,可得DE=CF,且AC=AD,可证RtADERtAFC,可得AE=AF,DAE=BAC,根据tanBAC=DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值再根据勾股定理求BC的长【详解】如图:作DEAB,交BA的延长线于E,作C
19、FAB,ABCD,DEAB,CFABCF=DE,且AC=ADRtADERtAFCAE=AF,DAE=BACtanBAC=3tanDAE=3设AE=a,DE=3a在RtBDE中,BD2=DE2+BE252=(4+a)2+27a2解得a1=1,a2=-(不合题意舍去)AE=1=AF,DE=3=CFBF=AB-AF=3在RtBFC中,BC=6【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可三、解答题(共8题,共72分)17、(1);(2)-1;【解析】(1)根据负整数指数幂、特殊角的三角函
20、数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题【详解】(1)=2-.(2)=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法18、证明见解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四边形OCFE是平行四边形【点睛】本题考查了平行四
21、边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.19、软件升级后每小时生产1个零件【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,(1+)x=1答:软件升级后每小时生产1个零件点睛:本题考查
22、了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键20、(1)P=t+2;(2)当0t8时,w=240;当8t12时,w=2t2+12t+16;当12t24时,w=t2+42t+88;此范围所对应的月销售量P的最小值为12吨,最大值为19吨【解析】分析:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)分0t8、8t12和12t24三种情况,根据月毛利润=月销量每吨的毛利润可得函数解析式;求出8t12和12t24时,月毛利润w在满足336w513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案详解:(1)
23、设8t24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,P=t+2;(2)当0t8时,w=(2t+8)=240;当8t12时,w=(2t+8)(t+2)=2t2+12t+16;当12t24时,w=(-t+44)(t+2)=-t2+42t+88;当8t12时,w=2t2+12t+16=2(t+3)2-2,8t12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12t24时,w=-t2+42t+88=-(t-21
24、)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,当12t17时,448w513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336w513所对应的t的取值范围是解题的关键21、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆比计划多了1辆. 【解析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-
25、5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4(5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆. (2)206+3+(2)+(1)+(+4)+(+2)+(5)=120+(+1)=121(辆),因为121120 121-120=1(辆)答:半年内总生产量是121辆比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则22、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数
26、根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,该方程的一个根为1,.解得.a的值为,该方程的另一根为.(2),不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.23、x1【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由得x1,由得x1,原不等式组的解集是x1点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.24、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元【解析】(1)设购买A
27、种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根据题意,得:100aa,解得:a50,设购买总费用为W,则W=50a+100(100a)=50a+10000,W随a的增大而减小,当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元考点:一元一次不等式的应用;二元一次方程组的应用.