四川省遂宁市第二中学2022-2023学年中考数学考前最后一卷含解析.doc

上传人:lil****205 文档编号:87996587 上传时间:2023-04-19 格式:DOC 页数:19 大小:941.50KB
返回 下载 相关 举报
四川省遂宁市第二中学2022-2023学年中考数学考前最后一卷含解析.doc_第1页
第1页 / 共19页
四川省遂宁市第二中学2022-2023学年中考数学考前最后一卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《四川省遂宁市第二中学2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省遂宁市第二中学2022-2023学年中考数学考前最后一卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD2如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C

2、(2,5)D(2,5)3下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形4如图,ABC为直角三角形,C=90,BC=2cm,A=30,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs能反映ycm2与xs之间函数关系的大致图象是()ABCD5纳米是一种长度单位,1纳米=10-9米,已知某

3、种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A米B米C米D米6已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=07一个多边形的内角和比它的外角和的倍少180,那么这个多边形的边数是( )A7B8C9D108若kb0,则一次函数的图象一定经过( )A第一、二象限B第二、三象限C第三、四象限D第一、四象限9下列运算正确的是()A2aa=1 B2a+b=2ab C(a4)3=a7 D(a)2(a)3=a510如图,A,C,E,G四点在同一直线上

4、,分别以线段AC,CE,EG为边在AG同侧作等边三角形ABC,CDE,EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则DIJ的面积是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知O的半径为5,由直径AB的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_12在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为_13因式分解:_.14如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,

5、CD的中点,AD=BC,PEF=35,则PFE的度数是_15分解因式=_,=_16如果,那么的结果是_.三、解答题(共8题,共72分)17(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知求楼间距AB;若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,18(8分)如图,ABC中,A=90,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60得到点E,连接CE.(1)当点E在BC边上

6、时,画出图形并求出BAD的度数;(2)当CDE为等腰三角形时,求BAD的度数;(3)在点D的运动过程中,求CE的最小值. (参考数值:sin75=, cos75=,tan75=)19(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?20(8分)综合与实践旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD矩形ABCD,它们各自对角线的交点重合于点O,连接AA,CC请你帮他们解决下列问题:观察发现:(1

7、)如图1,若ABAB,则AA与CC的数量关系是_;操作探究:(2)将图1中的矩形ABCD保持不动,矩形ABCD绕点O逆时针旋转角度(090),如图2,在矩形ABCD旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形ABCD绕点O旋转至AAAD时,若AB=6,BC=8,AB=3,求AA的长21(8分)在矩形中,点在上,,垂足为.求证.若,且,求.22(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供

8、的信息,解答下列问题:(1)共抽取 名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率23(12分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)求证:BC是O的切线;(2)已知AD=3,CD=2,求BC的长24如图,在ABC中,AD、AE分别为ABC的中线和角平分线过点C作CHAE于点H,并延长交AB于点F,连接DH,求证:DHBF参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先求出两次掷

9、一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.2、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了

10、坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标3、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理4、A【解析】C=90,BC=2cm,A=30,AB=4,由勾股定理得:AC=2,四边形DEFG为矩形,C=90,DE=GF=2,C=DEF=

11、90,ACDE,此题有三种情况:(1)当0x2时,AB交DE于H,如图DEAC,即,解得:EH=x,所以y=xx=x2,x 、y之间是二次函数,所以所选答案C错误,答案D错误,a=0,开口向上;(2)当2x6时,如图,此时y=22=2,(3)当6x8时,如图,设ABC的面积是s1,FNB的面积是s2,BF=x6,与(1)类同,同法可求FN=X6,y=s1s2,=22(x6)(X6),=x2+6x16,0,开口向下,所以答案A正确,答案B错误,故选A点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.5、C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n

12、,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】35000纳米=3500010-9米=3.510-5米故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定6、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,

13、a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.7、A【解析】设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】设这个多边形的边数为n,依题意得:180(n-2)=3603-180,解之得n=7.故选A.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.8、D【解析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解【详解】kb0时,b0,此时一次函数y=kx+b的图象经过第一、三、四象限;当k0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,

14、当kb0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系9、D【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答【详解】A、2aa=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(a)2(a)3=a5,故本选项正确,故选D【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.10、A【解析】根据等边三角形的性质得到FGEG3,AGFFEG60,根据三角形的内角和得到AFG90,根据相似三角形

15、的性质得到=,=,根据三角形的面积公式即可得到结论【详解】AC1,CE2,EG3,AG6,EFG是等边三角形,FGEG3,AGFFEG60,AEEF3,FAGAFE30,AFG90,CDE是等边三角形,DEC60,AJE90,JEFG,AJEAFG,=,EJ,BCADCEFEG60,BCDDEF60,ACIAEF120,IACFAE,ACIAEF,=,CI1,DI1,DJ,IJ,=DIIJ故选:A【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、x2+x+20(0x

16、10) 不存在 【解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0x10),再根据二次函数的性质,可求函数的最大值【详解】如图所示,连接PB,PBM=BAP,BMP=APB=90,PMBPAB,PM:PB=PB:AB,(0x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0x10),不存在【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.12、 cm【解析】利用已知得出底面圆的半径为:1cm,周长为2cm,进而得出母线长,即可得出答案【详解】半

17、径为1cm的圆形,底面圆的半径为:1cm,周长为2cm,扇形弧长为:2=,R=4,即母线为4cm,圆锥的高为:(cm)故答案为cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键13、n(m+2)(m2)【解析】先提取公因式 n,再利用平方差公式分解即可【详解】m2n4n=n(m24)=n(m+2)(m2).故答案为n(m+2)(m2)【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键14、35【解析】四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,PE是ABD的中位线,PF是BDC的

18、中位线,PE=AD,PF=BC,又AD=BC,PE=PF,PFE=PEF=35.故答案为35.15、 【解析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式16、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分三、解答题(共8题,共72分)17、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【解析】如图,作于M

19、,于则,设想办法构建方程即可解决问题求出AC,AD,分两种情形解决问题即可【详解】解:如图,作于M,于则,设在中,在中,的长为50m由可知:,冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型18、(1)BAD=15;(2)BAC=45或BAD =60;(3)CE=【解析】(1)如图1中,当点E在BC上时只要证明BADCAE,即可推出BAD=CAE=(90-60)=15;(2)分两种情形求解如图2中,当BD=DC时,易知AD=CD=DE,此时DEC是等腰三角形

20、如图3中,当CD=CE时,DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于O首先确定点E的运动轨迹是直线EE(过点E与BC成60角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时AD=AE,DAE=60,ADE是等边三角形,ADE=AED=60,ADB=AEC=120,AB=AC,BAC=90,B=C=45,在ABD和ACE中,B=C,ADB=AEC,AB=AC,BADCAE,BAD=CAE=(90-60)=15(2)如图2中,当BD=DC时,易知AD=CD=DE,

21、此时DEC是等腰三角形,BAD=BAC=45如图3中,当CD=CE时,DEC是等腰三角形AD=AE,AC垂直平分线段DE,ACD=ACE=45,DCE=90,EDC=CED=45,B=45,EDC=B,DEAB,BAD=ADE=60(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于OAOE=DOE,AED=AEO,AOEDOE,AO:OD=EO:OE,AO:EO=OD:OE,AOD=EOE,AODEOE,EEO=ADO=60,点E的运动轨迹是直线EE(过点E与BC成60角的直线上),EC的最小值即为线段CM的长(垂线段最短),设EN=CN=a

22、,则AN=4-a,在RtANE中,tan75=AN:NE,2+=,a=2-,CE=CN=2-在RtCEM中,CM=CEcos30=,CE的最小值为【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题19、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+

23、xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键20、(1)AA=CC;(2)成立,证明见解析;(3)AA=【解析】(1)连接AC、AC,根据题意得到点A、A、C、C在同一条直线上,根据矩形的性质得到OA=OC,OA=OC,得到答案;(2)连接AC、AC,证明AOACOC,根据全等三角形的性质证明;(3)连接AC,过C作CEAB,交AB的延长线于E,根据相似多边形的性质求出B

24、C,根据勾股定理计算即可【详解】(1)AA=CC,理由如下:连接AC、AC,矩形ABCD矩形ABCD,CAB=CAB,ABAB,点A、A、C、C在同一条直线上,由矩形的性质可知,OA=OC,OA=OC,AA=CC,故答案为AA=CC;(2)(1)中的结论还成立,AA=CC,理由如下:连接AC、AC,则AC、AC都经过点O,由旋转的性质可知,AOA=COC,四边形ABCD和四边形ABCD都是矩形,OA=OC,OA=OC,在AOA和COC中,AOACOC,AA=CC;(3)连接AC,过C作CEAB,交AB的延长线于E,矩形ABCD矩形ABCD,即,解得,BC=4,EBC=BCC=E=90,四边形B

25、ECC为矩形,EC=BC=4,在RtABC中,AC=10,在RtAEC中,AE=2,AA+BE=23,又AA=CC=BE,AA=【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键21、(1)证明见解析;(2)1【解析】分析:(1)利用“AAS”证ADFEAB即可得;(2)由ADF+FDC=90、DAF+ADF=90得FDC=DAF=30,据此知AD=2DF,根据DF=AB可得答案详解:(1)证明:在矩形ABCD中,ADBC,AEB=DAF,又DFAE,DFA=90,DFA=B,又AD=EA,ADFEAB,DF=AB(2)ADF+F

26、DC=90,DAF+ADF=90,FDC=DAF=30,AD=2DF,DF=AB,AD=2AB=1点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质22、(1)1;(2)详见解析;(3)750;(4)【解析】(1)用排球的人数排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)3015%=1(人)答:共抽取1名学生进行问卷调查;故答案为1(2)足球的人数为:1603024

27、36=50(人),“足球球”所对应的圆心角的度数为3600.25=90如图所示:(3)30000.25=750(人)答:全校学生喜欢足球运动的人数为750人(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确23、 (1)证明见解析(2)BC=【解

28、析】(1)AB是O的直径,得ADB=90,从而得出BAD=DBC,即ABC=90,即可证明BC是O的切线;(2)可证明ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90,ABC=90,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.24、见解析.【解析】先证明AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.【详解】AE为ABC的角平分线,CHAE,ACF是等腰三角形,AFAC,HFCH,AD为ABC的中线,DH是BCF的中位线,DHBF【点睛】本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DHBF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁