《吉林省长春市东北师大附中明珠学校2022-2023学年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《吉林省长春市东北师大附中明珠学校2022-2023学年中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )ABCD2如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )A-2B2C-4D43孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A五丈B四丈五尺
3、C一丈D五尺4若一次函数的图像过第一、三、四象限,则函数( )A有最大值B有最大值C有最小值D有最小值5以x为自变量的二次函数y=x22(b2)x+b21的图象不经过第三象限,则实数b的取值范围是( )Ab1.25Bb1或b1Cb2D1b26如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=7下列事件中为必然事件的是( )A打开电视机,正在播放茂名新闻B早晨的太阳从东方升起C随机掷一枚硬币,落地后正面朝上D下雨后,天空出现彩虹8下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个9一元二次方程x2+x2=0的根的情
4、况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根10如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,AB为O的直径,C、D为O上的点,若CAB=40,则CAD=_12如图,在边长为1的正方形格点图中,B、D、E为格点,则BAC的正切值为_13二次函数y=ax2+bx+c(a、b、c是常数,且a0)的图象如图所示,则a+b+2c_0(填“”“=”或“0,0或抛物线与x轴的交点的横坐标均大于等于0.当0时,2(b2)24(b21)0,解得b.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线
5、与x轴的交点的横坐标分别为x1,x2,则x1x22(b2)0,2(b2)24(b21)0,无解,此种情况不存在b.6、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C7、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误故选B8、A【解析】
6、3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.9、A【解析】=12-41(-2)=90,方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根. 10、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】DBC=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
7、二、填空题(本大题共6个小题,每小题3分,共18分)11、25【解析】连接BC,BD, 根据直径所对的圆周角是直角,得ACB=90,根据同弧或等弧所对的圆周角相等,得ABD=CBD,从而可得到BAD的度数【详解】如图,连接BC,BD,AB为O的直径,ACB=90,CAB=40,ABC=50,ABD=CBD=ABC=25,CAD=CBD=25故答案为25【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.12、 【解析】根据圆周角定理可得BAC=BDC,然后求出tanBDC的值即可【详解】由图可得,BAC=BDC,O在边长为1的网格格点上,BE=3,DB=4
8、,则tanBDC=tanBAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.13、【解析】由抛物线开口向下,则a0,抛物线与y轴交于y轴负半轴,则c0,对称轴在y轴左侧,则b0,因此可判断a+b+2c与0的大小【详解】抛物线开口向下a0抛物线与y轴交于y轴负半轴,c0对称轴在y轴左侧0b0a+b+2c0故答案为【点睛】本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键14、【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用15
9、、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式16、.【解析】根据圆周角定理可得出AOB=60,再根据弧长公式的计算即可【详解】ACB=30,AOB=60,OA=1cm,的长=cm.故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=三、解答题(共8题,共72分)17、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在
10、RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走18、客车不能通过限高杆,理由见解析【解析】根据DEBC,DFAB,得到EDF=ABC=14在RtEDF中,根据cosEDF=,求出DF的值,即可判断.【详解】DEBC,DFAB,EDF=ABC=14在RtEDF中,DFE=90,cosEDF=,DF=DEcosEDF=2.55cos142.550.972.1限高杆顶端到桥面的距离DF为
11、2.1米,小于客车高2.5米,客车不能通过限高杆【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.19、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名
12、),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.20、 (1)1;(2)2a+2【解析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案【详解】解:(1)原式=1+2+2=
13、1;(2)原式=a2+2a+1+1a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型21、(1)证明见解析;(2).【解析】(1)连接OD,求出AOD,求出DOB,求出ODP,根据切线判定推出即可(2)求出OP、DP长,分别求出扇形DOB和ODP面积,即可求出答案【详解】解:(1)证明:连接OD,ACD=60,由圆周角定理得:AOD=2ACD=120DOP=180120=60APD=30,ODP=1803060=90ODDPOD为半径,DP是O切线(2)ODP=90,P=30,OD=3cm,OP=6cm,由勾股定理得:DP=3cm图中阴影部分的面积2
14、2、【解析】解:由得把代入得把代人得原方程组的解为23、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键24、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大
15、值为2+2【解析】(1)作辅助线,首先证明ABEADG,再证明AEFAEG,进而得到EF=FG问题即可解决;(2)将ABD绕着点B顺时针旋转60,得到BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,DBE=60,可得DE=BD,根据DEDC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,由旋转的性质得DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EFBC,可求出BF,EF,以BC为直径作F,则点D在F上,连接DF,可求出DF,则AC=DEDF+EF,代入数值即可解决问题.【详解】(1)
16、如图,延长CD至G,使得DG=BE,正方形ABCD中,AB=AD,B=AFG=90,ABEADG,AE=AG,BAE=DAG,EAF=45,BAD=90,BAE+DAF=45,DAG+DAF=45,即GAF=EAF,又AF=AF,AEFAEG,EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在在等边三角形ABC中,AB=BC,ABC=60,如图,将ABD绕着点B顺时针旋转60,得到BCE,连接DE由旋转可得,CE=AD=2,BD=BE,DBE=60,DBE是等边三角形,DE=BD,在DCE中,DEDC+CE=4+2=6,当D、C、E三点共线时,DE存在最大值,且最大值为6,BD的最大值为6;(3)存在如图,以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,AB=BD,ABC=DBE,BC=BE,ABCDBE,DE=AC,在等边三角形BCE中,EFBC,BF=BC=2,EF=BF=2=2,以BC为直径作F,则点D在F上,连接DF,DF=BC=4=2,AC=DEDF+EF=2+2,即AC的最大值为2+2【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.