《北京市月坛中学2023届毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市月坛中学2023届毕业升学考试模拟卷数学卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )ABCD2下面四个几何体中,左视图是四边形的几何体共有()A1个B2个C3个D4个3如图,在半径为5的O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC
2、的值为()ABCD4如图所示的几何体的左视图是( )ABCD5下列计算结果正确的是()ABCD6如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D67已知是一个单位向量,、是非零向量,那么下列等式正确的是( )ABCD8若ABCABC,A=40,C=110,则B等于( )A30B50C40D709如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD10一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D
3、1个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,等边三角形ABC内接于O,若O的半径为2,则图中阴影部分的面积等于_12在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是_千米13为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买_个14如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=50,则2=_15如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速
4、度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似16有一组数据:3,a,4,6,7,它们的平均数是5,则a_,这组数据的方差是_三、解答题(共8题,共72分)17(8分)已知反比例函数的图象经过三个点A(4,3),B(2m,y1),C(6m,y2),其中m1(1)当y1y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程)18(8分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取
5、值范围;(3)直线与矩形没有公共点,直接写出的取值范围.19(8分)关于的一元二次方程有实数根求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值20(8分)如图,RtABC的两直角边AC边长为4,BC边长为3,它的内切圆为O,O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求O的半径长;(2)求线段DG的长21(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利120
6、0元,每件衬衫应降价多少元?22(10分)如图,AC=DC,BC=EC,ACD=BCE求证:A=D23(12分)如图,在ABC中,C=90作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积24在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢
7、.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1故选A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、B【解析】简单几何体的三视图【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个故选B3、D【解析】解:作直径AD,连结BD,如图AD为直径,ABD=90在RtABD中,AD=10,AB=6,
8、BD=8,cosD=C=D,cosC=故选D点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了解直角三角形4、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A5、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是
9、能够利用有关法则进行正确的运算,难度不大6、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.7、B【解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,
10、注意单位向量只规定大小没规定方向,则可分析求解【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.8、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30,根据相似三角形的性质可得:B=B=30.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.9、A【解析】【分析
11、】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图10、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形
12、的求法.扇形面积公式等.详解:连结OC,ABC为正三角形,AOC=120, , 图中阴影部分的面积等于 S扇形AOC=即S阴影=cm2.故答案为.点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.12、【解析】本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.13、1【解析】设购买篮球x个,则购买足球个
13、,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:为整数,最大值为1故答案为1【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键14、40【解析】如图,1=50,3=1=50,2=9050=40,故答案为:40.15、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;C
14、P和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.16、5 1 【解析】一组数据:3,a,4,6,7,它们的平均数是5,解得,1.故答案为5,1.三、解答题(共8题,共72分)17、(1)m=1;(2)点P坐标为(2m,1)或(6m,1)【解析】(1)先根据反比例函数的图象经过点A(4,3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1=,y2=,然后根据y1y2=4列出方程=4,解方程即可求出m的值;(2)设BD与x轴交于点E根据三角形PBD的面
15、积是8列出方程PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标【详解】解:(1)设反比例函数的解析式为y=,反比例函数的图象经过点A(4,3),k=4(3)=12,反比例函数的解析式为y=,反比例函数的图象经过点B(2m,y1),C(6m,y2),y1=,y2=,y1y2=4,=4,m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,D(2m,),BD=,三角形PBD的面积是8,BDPE=8,PE=8,PE=4m,E(2m,1),点P在x轴上,点P坐标为(2
16、m,1)或(6m,1)【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键18、(1);(2);(3)【解析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围【详解】解:(1) ,设直线表达式为,,解得直线表达式为;(2) 直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1, 当过点时,
17、代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3) ,直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键本题考查知识点较多,综合性较强,难度适中19、(1);(2)的值为【解析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2
18、,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根20、 (1) 1;(2)【解析】(1)由勾股定理求AB,设O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GPAC,垂足为P,根据CG平分直角ACB可知PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由RtAGPRt
19、ABC,利用相似比求x,由OG=CG-CO求OG,在RtODG中,由勾股定理求DG试题解析:(1)在RtABC中,由勾股定理得AB=5,O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GPAC,垂足为P,设GP=x,由ACB=90,CG平分ACB,得GCP=45,GP=PC=x,RtAGPRtABC,=,解得x=,即GP=,CG=,OG=CG-CO=-=,在RtODG中,DG=.21、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x
20、2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键.22、证明见试题解析【解析】试题分析:首先根据ACD=BCE得出ACB=DCE,结合已知条件利用SAS判定ABC和DEC全等,从而得出答案.试题解析:ACD=BCE ACB=DCE 又AC=DC BC=EC ABCDEC A=D考点:三角形全等的证明23、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据
21、角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.24、(1):,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,在规划2中,(小黄赢).,小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.