宁夏固原第一中学2023年高三(最后冲刺)数学试卷含解析.doc

上传人:lil****205 文档编号:87996103 上传时间:2023-04-19 格式:DOC 页数:21 大小:2.22MB
返回 下载 相关 举报
宁夏固原第一中学2023年高三(最后冲刺)数学试卷含解析.doc_第1页
第1页 / 共21页
宁夏固原第一中学2023年高三(最后冲刺)数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《宁夏固原第一中学2023年高三(最后冲刺)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《宁夏固原第一中学2023年高三(最后冲刺)数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1下列函数中,值域为的偶函数是( )ABCD2已知向量,当时,( )ABCD3不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD4已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD5数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:曲线有四条对称轴;曲线上的点到原点的最大距离为;曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;四叶草面积小于.其中,所有正确结论的序号是( )ABCD6方程在区间内的所有解之和等于( )A4B6C8D1072019年10月1日,中华人民共和国成立70周年,举

3、国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D3608已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D9若变量,满足,则的最大值为( )A3B2CD1010如图,在中,且,则( )A1BCD11已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD12我国古代数学著作九章算术有如下问题:“今有蒲生一日,

4、长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中各项系数之和为32,则展开式中x的系数为_14设为抛物线的焦点,为上互相不重合的三点,且、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_.15已知数列满足,则_16正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为,使

5、得;直线与直线所成角的正切值的取值范围是;与平面所成锐二面角的正切值为;正方体的各个侧面中,与所成的锐二面角相等的侧面共四个其中正确命题的序号是_(写出所有正确命题的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.18(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张

6、卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.19(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.20(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.21(12分

7、)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.22(10分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C考点:1、函数的奇偶性;2、函数的值域2、A【解析】根据向量的坐标运算,求出,即可求解.【详解】,.

8、故选:A.【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.3、A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.4、B【解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,化简得.构造函数,所以在上递减,在

9、上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.5、C【解析】利用之间的代换判断出对称轴的条数;利用基本不等式求解出到原点的

10、距离最大值;将面积转化为的关系式,然后根据基本不等式求解出最大值;根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】:当变为时, 不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;:由可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.

11、【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.6、C【解析】画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.7、B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B8、D【解

12、析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,代入上式子中,得到,结合离心率满足,即可得出,故选D【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难9、D【解析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规

13、划问题,考查数形结合思想,属于中档题10、C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.11、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查

14、双曲线的性质及其应用,解题时要注意挖掘隐含条件12、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、2025【解析】利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】

15、本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14、或【解析】设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,因为、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.15、【解析】项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,故,由-得,显然当时不满足上式,故答

16、案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.16、【解析】取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:利用等腰三角形的性质即可判断;直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;由,取为中点,则,则即为与平面所成的锐二面角,进而求解;由平行的性质及图形判断即可.【详解】取中点,连接,则,所以,所以平面即为平面,取中点,中点,连接,则易证得,所以平面平面,所以点的运动轨迹为线段,平面即为平面.取为中点,因为是等腰三角形,所以,又因为,所以,故正确;直线与直线所成角即

17、为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;当点与点或点重合时,直线与直线所成角最大,此时,所以直线与直线所成角的正切值的取值范围是,正确;与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,所以正确;正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以正确故答案为:【点睛】本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)令可求得的值,令,由得出,两式相减可推导出数列为等比数列,确定该数列的公比,

18、利用等比数列的通项公式可求得数列的通项公式,再利用对数的运算性质可得出数列的通项公式;(2)运用等差数列的求和公式,运用数列的分组求和和裂项相消求和,化简可得.【详解】(1)当时,所以;当时,得,即,所以,数列是首项为,公比为 的等比数列,.;(2)由(1)知数列是首项为,公差为的等差数列,.,.所以.【点睛】本题考查数列的递推式的运用,注意结合等比数列的定义和通项公式,考查数列的求和方法:分组求和法和裂项相消求和,考查运算能力,属于中档题18、(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【解析】(1)将分别乘以区间、对应的矩形面积可得出结果;(2)由题可知,随机

19、变量的可能取值为、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布列,并由此计算出随机变量的数学期望值.【详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)由题意可知,随机变量的所有可能取值为、,所以,随机变量的分布列为:所以,随机变量的期望为.【点睛】本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.19、(1);(2)【解析】(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而

20、得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即, 解得,所以实数的取值范围为.【点睛】本题考查了根据函数奇偶性求解析式,分段函数图像画法,由函数零点个数求参数的取值范围应用,数形结合的应用,属于中档题.20、(1)(2);【解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数

21、列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.21、(1) (2)【解析】(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,单调递增,当, 单调递减,作出函数图象如下所示,观察可知,即;(2)若为真,则,解得;由为

22、假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围22、(1)在上单调递增,在上单调递减(2)见解析【解析】(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论【详解】解:,函数的定义域为,(1)当时,由得,由得,故函数在上单调递增,在上单调递减(2)证明:由条件可得,方程的两根分别为,且,可得【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根的知识在可导函数中一般由确定增区间,由确定减区间

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁