四川省南充市重点中学2023届高三适应性调研考试数学试题含解析.doc

上传人:lil****205 文档编号:87996003 上传时间:2023-04-19 格式:DOC 页数:21 大小:2.40MB
返回 下载 相关 举报
四川省南充市重点中学2023届高三适应性调研考试数学试题含解析.doc_第1页
第1页 / 共21页
四川省南充市重点中学2023届高三适应性调研考试数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《四川省南充市重点中学2023届高三适应性调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省南充市重点中学2023届高三适应性调研考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以下判断:以为直径的圆与抛物线准线相离;直线与直线的斜率乘积为;设过点,的圆的圆心坐标为,半径为,则其中,所有正确判断的序号是( )ABCD2若,满足约束条件,则的最大值是( )AB

2、C13D3根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD4已知集合,,则ABCD5已知是球的球面上两点,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )ABCD6已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD7已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD8我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对9若函数在处有极值

3、,则在区间上的最大值为( )AB2C1D310已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD11已知,则( )A5BC13D12如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D98二、填空题:本题共4小题,每小题5分,共20分。13数列满足递推公式,且,则_.14已知函数,则不等式的解集为_.15函数的值域为_16已知数列的首项,函数在上有唯一零点,则数列|的前项和_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,求的通项公式;(3)在第(

4、2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;18(12分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.19(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案:将每个人的血分别化验,这时需要验1000次.方案:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为

5、每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)20(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为4

6、5的直线,交于点,且的最大值为,求的值.21(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.22(10分)如图,三棱柱中,与均为等腰直角三角形,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于,利用抛物线的定义,利用可判断;对于,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于,将代入抛物线的方程可得,从而,利用韦达定理可得,再由,可用m表示,线段的

7、中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以正确由题意可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所以则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以过点,的圆的圆心在轴上由上,有,则所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以于是,代入,得,所以所以正确故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于

8、较难题.2、C【解析】由已知画出可行域,利用目标函数的几何意义求最大值【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即故选:【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题3、C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题4、D【解析】因为,所以,故选D5、C【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C考点:外接球表面积和椎体的体积6、B【解析】设,则,因

9、为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B7、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.8、A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.

10、9、B【解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题10、C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数

11、的单调性比较大小,还考查化简能力和转化思想.11、C【解析】先化简复数,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.12、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2020【解析】可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,将以上式子累加得.由得.令,有.故答案为:2020【点睛】本题考查数列递

12、推式和累加法的应用,属于基础题14、【解析】,分类讨论即可.【详解】由已知,若,则或解得或,所以不等式的解集为.故答案为:【点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.15、【解析】利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案【详解】由题意,可得,令,即,则,当时,当时,即在为增函数,在为减函数,又,故函数的值域为:【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题16、【解析】

13、由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【详解】因为为偶函数,在上有唯一零点,所以,为首项为2,公比为2的等比数列.所以,.故答案为:【点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜

14、想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,当时,所以,当时,当时,所以,当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,当时,n为偶数,由得故,时,命题也成立.综上可知, 当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.当n为偶数时

15、,所以随n的增大而减小从而当n为偶数时,的最大值是.当n为奇数时,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.18、(1)见解析;(2)【解析】(1)取的中点,连接,由,进而,由,得. 进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使

16、,连接,得,得二面角的平面角为,再求解即可【详解】(1)证明:取的中点,连接,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,所以,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角为.又计算得,所以.【点睛】本题考查线面垂直的判定,考查空间向量求二面

17、角,考查空间想象及计算能力,是中档题19、(1)分布列见解析;(2)406.【解析】(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,所以的分布列为:(2)方案中.结合(1)知每个人的平均化验次数为:时,此时1000人需要化验的总次数为690次,时,此时1000人需要化验的总次数为604次,时,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案则需化验1000次

18、,故在这三种分组情况下,相比方案,当时化验次数最多可以平均减少次.【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.20、(1),;(2)或【解析】(1)将曲线的极坐标方程和直线的参数方程化为直角坐标方程,联立方程,即可求得曲线与的交点坐标;(2)由直线的普通方程为,故上任意一点,根据点到直线距离公式求得到直线的距离,根据三角函数的有界性,即可求得答案.【详解】(1),.由,得,曲线的直角坐标方程为.当时,直线的普通方程为由解得或.从而与的交点坐标为,.(2)由题意知直线的普通方程为,的参数方程为(为参数)故上任意一点到的距离为则.当时,的最大值为所以;当时,的最大值为,所

19、以.综上所述,或【点睛】解题关键是掌握极坐标和参数方程化为直角坐标方程的方法,和点到直线距离公式,考查了分析能力和计算能力,属于中档题.21、(1);(2)见解析.【解析】(1)根据题意得出关于、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、,由,得.,则有,由,得,由,可得,综上,点在定直线上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线

20、上的证明,考查计算能力与推理能力,属于中等题.22、(1)见解析(2)【解析】(1)取中点,连接,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【详解】解析:(1)取中点,连接,由已知可得,侧面是菱形,即,平面,平面平面.(2)设,则,建立如图所示空间直角坐标系,则,设平面的法向量为,则,令得.同理可求得平面的法向量,.【点睛】本题考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者线面角的问题时,常建立空间直角坐标系,通过求面的法向量、线的方向向量,继而求解.特别地,对于线面角问题,法向量与方向向量的余角才是所求的线面角,即两个向量夹角的余弦值为线面角的正弦值.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁