《四川省乐山市井研县重点达标名校2023年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《四川省乐山市井研县重点达标名校2023年中考二模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是某个几何体的展开图,该几何体是( )A三棱柱B圆锥C四棱柱D圆柱2下列计算正确的是()A2x23x2x2Bxxx2C(x1)x1D3x3x3如图,在ABC中,AC=BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D624如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()ABCD5如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )ABCD6如图中任意画一个点,落在黑色区域的概率是()A
3、BCD507如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D48已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.231079下列运算正确的是()Aa3+a3a6Ba6a2a4Ca3a5a15D(a3)4a710关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,11如图,若ABCD,则、之间的关系为()A
4、+=360B+=180C+=180D+=18012已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A6B7C8D9二、填空题:(本大题共6个小题,每小题4分,共24分)13观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是_14如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_15在实数范围内分解因式: =_16用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_17在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为,那么角的余弦值是_18如图,在平面直角坐标系中,将矩形AOCD沿直线AE折
5、叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.20(6分)观察下列等式:222112+1322222+1422332+1第个等式为 ;根据上面等式的规律,猜想第n个等式(用含
6、n的式子表示,n是正整数),并说明你猜想的等式正确性21(6分)如图,ABC和ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EFCD与BE相等?若相等,请证明;若不相等,请说明理由;若BAC=90,求证:BF1+CD1=FD122(8分)如图,抛物线y=x2+bx+c(a0)与x轴交于点A(1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0m3),连结DC并延长至E,使得CE=CD,连结BE,BC(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求BCE的面积最大值23(8分)(14
7、分)如图,在平面直角坐标系中,抛物线y=mx28mx+4m+2(m2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2x1=4,直线ADx轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q(1)求抛物线的解析式;(2)当0t8时,求APC面积的最大值;(3)当t2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若不存在,请说明理由24(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果)如表为装运甲、乙、丙三种水果的重量及利润甲乙丙每辆汽车能装的数量
8、(吨)423每吨水果可获利润(千元)574(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?25(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C(1)求双曲线解析式;(2)点P在x轴上,如果ACP的面积为5,求点P的坐标.26(12分)已知关于x的一元二次方程x2mx20
9、若x1是方程的一个根,求m的值和方程的另一根;对于任意实数m,判断方程的根的情况,并说明理由27(12分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元求第一批盒装花每盒的进价是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【详解】解:观察图形可知,这个几何体是三棱柱故选A【点睛】本题考查的是三棱柱的展开
10、图,对三棱柱有充分的理解是解题的关键2、C【解析】根据合并同类项法则和去括号法则逐一判断即可得【详解】解:A2x2-3x2=-x2,故此选项错误;Bx+x=2x,故此选项错误;C-(x-1)=-x+1,故此选项正确;D3与x不能合并,此选项错误;故选C【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键3、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE180,即2B180118,解得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB4、B【解析】根据
11、相似三角形的判定方法一一判断即可【详解】解:因为中有一个角是135,选项中,有135角的三角形只有B,且满足两边成比例夹角相等,故选:B【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型5、D【解析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置掌握定义是关键此题主要考查了简单组合体的三视图,准确把握观察角度
12、是解题关键6、B【解析】抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是. 故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.7、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,O
13、B=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质
14、是解本题关键8、B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定详解:0.000000823=8.2310-1故选B点睛:本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定9、B【解析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a32a3,故A错误;B、a6a2a4,故B正确;C、a3a5a8,故C错误;D、(a3)4a12,故D错误故选:B【点睛】
15、此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.10、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键11、C【解析】过点E作EFAB,如图,易得CDEF,然后根据平行线的性质可得BAE+FEA=180,C=
16、FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180,C=FEC=,FEA=,+()=180,即+=180故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键12、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以及多边形的外角和定理二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】试题解析:根据题意得,这一组数的第个数
17、为: 故答案为点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可14、y=2(x+1)2+1【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+115、2(x+)(x-)【解析】先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】2x2-6=2(x2-3)=2(x+)(x-)故答案为2(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公
18、式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止16、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.17、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】点A坐标为(3,4),OA=5,cos=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.18、(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角AOF中,利用勾股定理求得OF=6,然
19、后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标【详解】四边形AOCD为矩形,D的坐标为(10,8),AD=BC=10,DC=AB=8,矩形沿AE折叠,使D落在BC上的点F处,AD=AF=10,DE=EF,在RtAOF中,OF= =6,FC=106=4,设EC=x,则DE=EF=8x,在RtCEF中,EF2=EC2+FC2,即(8x)2=x2+42,解得x=3,即EC的长为3.点E的坐标为(10,3).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标
20、为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论
21、求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长
22、度、难度不是很大,是一道不错的中考压轴题20、(1)522442+1;(2)(n+1)22nn2+1,证明详见解析【解析】(1)根据的规律即可得出第个等式;(2)第n个等式为(n+1)22nn2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边【详解】(1)222112+1322222+1422332+1第个等式为522442+1,故答案为:522442+1,(2)第n个等式为(n+1)22nn2+1(n+1)22nn2+2n+12nn2+1【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键21、(1)CD=BE,理由见解析;(1)证明见解析.【解析】(1)由两个
23、三角形为等腰三角形可得ABAC,AEAD,由BACEAD可得EABCAD,根据“SAS”可证得EABCAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出EBF90,在RtEBF中由勾股定理得出BF1BE1EF1,然后证得EFFD,BECD,等量代换即可得出结论【详解】解:(1)CDBE,理由如下:ABC和ADE为等腰三角形,ABAC,ADAE,EADBAC,EADBADBACBAD,即EABCAD,在EAB与CAD中,EABCAD,BECD;(1)BAC90,ABC和ADE都是等腰直角三角形,ABFC45,EABCAD,EBAC,EBA45,EBF90,在RtBFE中,BF1
24、BE1EF1,AF平分DE,AEAD,AF垂直平分DE,EFFD,由(1)可知,BECD,BF1CD1FD1【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键22、(1)y=x2+2x+1(2)2Ey2(1)当m=1.5时,SBCE有最大值,SBCE的最大值=【解析】分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0m1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次
25、函数的最值即可.详解:(1)抛物线 过点A(1,0)和B(1,0) (2)点C为线段DE中点设点E(a,b) 0m1, 当m=1时,纵坐标最小值为2 当m=1时,最大值为2点E纵坐标的范围为 (1)连结BD,过点D作x轴的垂线交BC于点HCE=CDH(m,-m+1) 当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.23、(1);(2)12;(3)t=或t=或t=1【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0t6时和6
26、t8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2t6时和t6时两种情况进行讨论,再根据三角形相似的条件,即可得解试题解析:解:(1)由题意知x1、x2是方程mx28mx+4m+2=0的两根,x1+x2=8,由解得:B(2,0)、C(6,0)则4m16m+4m+2=0,解得:m=,该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,直线AC的解析式为:y=x+3,要构成APC,显然t6,分两种情况讨论:当0t6时,设直线l与AC交点为F,则:F(t,),P(t,),PF=,SAPC=SAPF+SCPF=,此时最大值为:,当6t8时,设直线l与A
27、C交点为M,则:M(t,),P(t,),PM=,SAPC=SAPFSCPF=,当t=8时,取最大值,最大值为:12,综上可知,当0t8时,APC面积的最大值为12;(3)如图,连接AB,则AOB中,AOB=90,AO=3,BO=2,Q(t,3),P(t,),当2t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=2(舍),当t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=1,t=或t=或t=1考点:二次函数综合题24、(1)乙种水果的车有2辆、丙种
28、水果的汽车有6辆;(2)乙种水果的汽车是(m12)辆,丙种水果的汽车是(322m)辆;(3)见解析【解析】(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;(3)设总利润为w千元,表示出w=10m+1列出不等式组确定m的取值范围13m15.5,结合一次函数的性质,即可解答【详解】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得: 解得:答:装运乙种水果的车有2辆、丙种水果的汽车有6辆(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得: 答:装运乙种水果的汽车是(m12)辆,丙种水果的汽车是(32
29、2m)辆(3)设总利润为w千元,w=54m+72(m12)+43(322m)=10m+113m15.5,m为正整数,m=13,14,15,在w=10m+1中,w随m的增大而增大,当m=15时,W最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元【点睛】此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定自变量的取值范围25、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出P
30、C的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或26、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为
31、判别式与1的关系进行判断(1)把x=-1代入得1+m-2=1,解得m=12-2=1另一根是2;(2),方程有两个不相等的实数根考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式的关系:当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根27、30元【解析】试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量2可得方程解:设第一批盒装花的进价是x元/盒,则2=,解得 x=30经检验,x=30是原方程的根答:第一批盒装花每盒的进价是30元考点:分式方程的应用