《四川省内江市资中学县达标名校2023年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省内江市资中学县达标名校2023年中考数学四模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在中,D、E分别在边AB、AC上,交AB于F,那么下列比例式中正确的是ABCD2如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,
2、BD于M,N两点若AM2,则线段ON的长为( )ABC1D3如图,ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点C1处B点C2处C点C3处D点C4处4在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )ABCD5函数y=中,x的取值范围是()Ax0Bx2Cx2Dx26小苏和小林在如图所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图所示.下列叙述正确的是( ).A两人
3、从起跑线同时出发,同时到达终点B小苏跑全程的平均速度大于小林跑全程的平均速度C小苏前跑过的路程大于小林前跑过的路程D小林在跑最后的过程中,与小苏相遇2次7已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定8如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿MDA远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束设点E的运动时间为x
4、,EFG的面积为y,下列能表示y与x的函数关系的图象是()ABCD9如图所示,的顶点是正方形网格的格点,则的值为()ABCD10计算 的结果为()A1BxCD二、填空题(共7小题,每小题3分,满分21分)11分解因式:x24=_12关于的分式方程的解为正数,则的取值范围是_13化简:_.14在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为,那么角的余弦值是_15为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买_个16如图,已知正方形ABCD中,MAN=45,连接BD与AM,AN分别交
5、于E,F点,则下列结论正确的有_MN=BM+DNCMN的周长等于正方形ABCD的边长的两倍;EF1=BE1+DF1;点A到MN的距离等于正方形的边长AEN、AFM都为等腰直角三角形SAMN=1SAEFS正方形ABCD:SAMN=1AB:MN设AB=a,MN=b,则1117如图,在矩形纸片ABCD中,AB2cm,点E在BC上,且AECE若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC_cm三、解答题(共7小题,满分69分)18(10分)先化简,再求值:,其中x为方程的根19(5分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线
6、交AB,BC分别于点M,N,反比例函数的图象经过点M,N求反比例函数的解析式;若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标20(8分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b ,c ,点C的坐标为 如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PBA+CBO45时求PBA的面积21(10分)如图,在ABC中,ABAC,BAC9
7、0,M是BC的中点,延长AM到点D,AEAD,EAD90,CE交AB于点F,CDDF(1)CAD_度;(2)求CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明22(10分)如图,DEF是由ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心23(12分)如图,点A、B在O上,点O是O的圆心,请你只用无刻度的直尺,分别画出图和图中A的余角.(1)图中,点C在O上;(2)图中,点C在O内;24(14分)如图,A=B=30(1)尺规作图:过点C作CDAC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BDAB参考答案一、选择题(每小题只
8、有一个正确答案,每小题3分,满分30分)1、C【解析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断【详解】A、EFCD,DEBC,CEAC,故本选项错误;B、EFCD,DEBC,ADDF,故本选项错误;C、EFCD,DEBC,故本选项正确;D、EFCD,DEBC,ADDF,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健2、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根
9、据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充
10、分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质3、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.4、A【解析】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A故选A5、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键6、D【解析】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时
11、,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.7、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质8、A【解析】当点F在MD上运动时,0x2;当点F在DA上运动时,2x4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0x2,则:y=S梯形ECDG-SEFC-SGDF=,当点F在DA上运动时,2x4,则:y=,综上,只有A选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函
12、数图像,抓住动点运动的特点是解题关键.9、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形10、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则二、填空题(共7小题,每小题3分,满分21分)11、(x+2)(x2)【解析】【分析】直接
13、利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反12、且.【解析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,分式方程的解为正数,x=m-20且x-10,即m-20且m-2-10,m2且m1,故答案为m2且m113、【解析】根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.14、【
14、解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】点A坐标为(3,4),OA=5,cos=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.15、1【解析】设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:为整数,最大值为1故答案为1【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元
15、一次不等式是解题的关键16、【解析】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH证明MANHAN,得到MN=NH,根据三角形周长公式计算判断;判断出BM=DN时,MN最小,即可判断出;根据全等三角形的性质判断;将ADF绕点A顺时针性质90得到ABH,连接HE证明EAHEAF,得到HBE=90,根据勾股定理计算判断;根据等腰直角三角形的判定定理判断;根据等腰直角三角形的性质、三角形的面积公式计算,判断,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断【详解】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH则DAH=BAM,四边形ABCD是正方形,BAD=9
16、0,MAN=45,BAN+DAN=45,NAH=45,在MAN和HAN中,MANHAN,MN=NH=BM+DN,正确;BM+DN1,(当且仅当BM=DN时,取等号)BM=DN时,MN最小,BM=b,DH=BM=b,DH=DN,ADHN,DAH=HAN=11.5,在DA上取一点G,使DG=DH=b,DGH=45,HG=DH=b,DGH=45,DAH=11.5,AHG=HAD,AG=HG=b,AB=AD=AG+DG=b+b=b=a,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,1,错误;MN=NH=BM+DNCMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,CM
17、N的周长等于正方形ABCD的边长的两倍,结论正确;MANHAN,点A到MN的距离等于正方形ABCD的边长AD,结论正确; 如图1,将ADF绕点A顺时针性质90得到ABH,连接HEDAF+BAE=90-EAF=45,DAF=BAE,EAH=EAF=45,EA=EA,AH=AD,EAHEAF,EF=HE,ABH=ADF=45=ABD,HBE=90,在RtBHE中,HE1=BH1+BE1,BH=DF,EF=HE,EF1=BE1+DF1,结论正确;四边形ABCD是正方形,ADC=90,BDC=ADB=45,MAN=45,EAN=EDN,A、E、N、D四点共圆,ADN+AEN=180,AEN=90AEN
18、是等腰直角三角形,同理AFM是等腰直角三角形;结论正确;AEN是等腰直角三角形,同理AFM是等腰直角三角形,AM=AF,AN=AE,如图3,过点M作MPAN于P,在RtAPM中,MAN=45,MP=AMsin45,SAMN=ANMP=AMANsin45,SAEF=AEAFsin45,SAMN:SAEF=1,SAMN=1SAEF,正确;点A到MN的距离等于正方形ABCD的边长,S正方形ABCD:SAMN=1AB:MN,结论正确即:正确的有,故答案为【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形17、4【解析】A
19、B=2cm,AB=AB1,AB1=2cm,四边形ABCD是矩形,AE=CE,ABE=AB1E=90AE=CEAB1=B1CAC=4cm三、解答题(共7小题,满分69分)18、1【解析】先将除式括号里面的通分后,将除法转换成乘法,约分化简然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值【详解】解:原式解得,时,无意义,取当时,原式19、(1);(2)点P的坐标是(0,4)或(0,4).【解析】(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)B
20、(4,2),四边形OABC是矩形,OA=BC=2.将y=2代入3得:x=2,M(2,2).把M的坐标代入得:k=4,反比例函数的解析式是;(2).OPM的面积与四边形BMON的面积相等,.AM=2,OP=4.点P的坐标是(0,4)或(0,4).20、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)SPBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,
21、-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,422+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,QDn+2又yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大
22、值为(3)如图2,OBAOBP+PBA25PBA+CBO25OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+225+27P(5,7)过P作PHcy轴于点H则S四边形OHPA(OA+PH)OH(2+5)724SOABOAOB227SBHPPHBH5335SPBAS四边形OHPA+SOABSBHP24+7353【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的
23、思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法21、(1)45;(2)90;(3)见解析.【解析】(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明BADCAD,得BDCDDF,则DBADFBDCA,根据四边形内角和与平角的定义可得BAC+CDF180,所以CDF90;(3)证明EAFDAF,得DFEF,由可知,可得结论【详解】(1)解:ABAC,M是BC的中点,AMBC,BADCAD,BAC90,CAD45,故答案为:45(2)解:如图,连接DBABAC,BAC90,M是BC的中点,BADCAD45BADCAD DB
24、ADCA,BDCDCDDF,BDDF DBADFBDCADFBDFA180,DCADFA180BACCDF180CDF90(3)证明:EAD90,EAFDAF45ADAE,EAFDAFDFEF由可知,【点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.22、见解析【解析】试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.解:如图所示,点P即为所求作的旋转中心23、图形见解析【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角
25、画图即可;(2)延长AC交O于点E ,利用(1)的方法画图即可.试题解析:如图DBC就是所求的角; 如图FBE就是所求的角 24、见解析【解析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由ACD=90,根据三角形的内角和和等腰三角形的性质得到DCB=A=30,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为所求;(2)CDAC,ACD=90A=B=30,ACB=120DCB=A=30,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作