《吉林省吉林市第12中学2022-2023学年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《吉林省吉林市第12中学2022-2023学年中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的工件,其俯视图是()ABCD2已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D53在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr54不等式3x
2、2(x+2)的解是()Ax2Bx2Cx4Dx45由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()ABCD6下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=07在RtABC中,C90,那么sinB等于()ABCD8如图,ABC中,ADBC,AB=AC,BAD=30,且AD=AE,则EDC等于()A10B12.5C15D209下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )ABCD10下列说法中,正确的个数
3、共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A1个 B2个 C3个 D4个11函数的图象上有两点,若,则( )ABCD、的大小不确定12如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)二、填空题:(本大题共6个小题,每小题4分,共24分)13反比例函数y = 的图像经过点(2,4),则k的值等
4、于_14已知A(x1,y1),B(x2,y2)都在反比例函数y的图象上若x1x24,则y1y2的值为_15如图所示,ABC的顶点是正方形网格的格点,则sinA的值为_16因式分解: 17如图,已知点A(a,b),0是原点,OA=OA1,OAOA1,则点A1的坐标是 18在33方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_2x32y34y三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)雅安地震,某地驻军对道路进行清理该地驻军在清理道路的工程中出色完成了任务这是记者与驻军工程指挥部的一段对话:
5、记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍通过这段对话,请你求出该地驻军原来每天清理道路的米数20(6分)(1)计算:|2|(2015)0+()22sin60+;(2)先化简,再求值:(2+),其中a= 21(6分)如图,在ABC中,ACB=90,O是AB上一点,以OA为半径的O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F(1)求证:AE=AF;(2)若DE=3,sinBDE=,求AC的长22(8分)如图,AB为O的直径,CD与O相切于点E,交AB的延长线于点D,连接BE,过点O作OCB
6、E,交O于点F,交切线于点C,连接AC.(1)求证:AC是O的切线;(2)连接EF,当D= 时,四边形FOBE是菱形.23(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请
7、计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)24(10分)-()-1+3tan6025(10分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?26(12分)先化简,再求值,其中x=127(12分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业图 2 是其
8、工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin280.47,cos280.88,tan280.53)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线2、B【解析】根据关于x的
9、方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B3、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系4、D【解析】不等式先展开再移项即可解答.【详解】解:不等式3x2(x+2
10、),展开得:3x2x+4,移项得:3x-2x4,解之得:x4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.5、A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形故选A6、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.7、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键
11、是熟练的掌握锐角三角函数的定义.8、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30,DAC=BAD=30,AD=AE(已知),ADE=75EDC=90-ADE=15故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合9、B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案【详解】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错
12、误故选B10、C【解析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握11、A【解析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系【详解】解:y=-1x1-8x+m,此函数的对称轴为:x=-=-=-1,x1x1-1,两点都在对称轴左侧,a0,对称轴左侧y随
13、x的增大而增大,y1y1故选A【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键12、A【解析】直接利用平移的性质结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】解:点(2,4)在反比例函数的图象上,即k=1故答案为1点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式14、1【解析】根据反比例函数图象上点的坐标特征得到
14、再把它们相乘,然后把代入计算即可【详解】根据题意得所以故答案为:1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.15、【解析】解:连接CE,根据图形可知DC=1,AD=3,AC=,BE=CE=,EBC=ECB=45,CEAB,sinA=,故答案为考点:勾股定理;三角形的面积;锐角三角函数的定义16、;【解析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解【详解】x2x12=(x4)(x+3)故答案为(x4)(x+3)17、(b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设AOX=,A1OD=,A1坐标(x,y)
15、则+=90sin=cos cos=sin sin=cos=同理cos =sin=所以x=b,y=a,故A1坐标为(b,a)【点评】重点理解三角函数的定义和求解方法,主要应用公式sin=cos,cos=sin18、0【解析】根据题意列出方程组,求出方程组的解即可得到结果【详解】解:根据题意得:,即,解得:,则x+y1+10,故答案为0【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1米【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论试题解析:解:设原来每天清理道路
16、x米,根据题意得: 解得,x=1检验:当x=1时,2x0,x=1是原方程的解答:该地驻军原来每天清理道路1米点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根20、(1)5+;(2)【解析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=21+42+2=21+4+2=5+;(2)原式=,当a=时,原式=21、(1)证明见解析;(2)1【解析】(1)根据切线的性质和平行线的性质解答即
17、可;(2)根据直角三角形的性质和三角函数解答即可【详解】(1)连接OD,OD=OE,ODE=OED直线BC为O的切线,ODBCODB=90ACB=90,ODACODE=FOED=FAE=AF;(2)连接AD,AE是O的直径,ADE=90,AE=AF,DF=DE=3,ACB=90,DAF+F=90,CDF+F=90,DAF=CDF=BDE,在RtADF中,=sinDAF=sinBDE=,AF=3DF=9,在RtCDF中,=sinCDF=sinBDE=,CF=DF=1,AC=AFCF=1【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活
18、运用相关知识是解题的关键.22、(1)详见解析;(2)30.【解析】(1)利用切线的性质得CEO=90,再证明OCAOCE得到CAO=CEO=90,然后根据切线的判定定理得到结论;(2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定OBE为等边三角形,所以BOE=60,然后利用互余可确定D的度数【详解】(1)证明:CD与O相切于点E,OECD,CEO=90,又OCBE,COE=OEB,OBE=COAOE=OB,OEB=OBE,COE=COA,又OC=OC,OA=OE,OCAOCE(SAS),CAO=CEO=90,又AB为O的直径,AC为O的切线;(2)四边形FOBE是菱形,OF=
19、OB=BF=EF,OE=OB=BE,OBE为等边三角形,BOE=60,而OECD,D=30【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理23、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算
20、可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为36040%144,故答案为144;(3)A同学得票数为30035%105,B同学得票数为30040%120,C同学得票数为30025%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、0【解析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角
21、函数值计算,然后进行加减运算【详解】原式=-2+2-2+3=0.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式也考查了零指数幂、负整数指数幂和特殊角的三角函数值25、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到
22、的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法26、1【解析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()=;将x=1代入原式=1【点睛】分式的化简求值27、5.8【解析】过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可【详解】解:如图,过点作于点,过点作于点, 又, 四边形为矩形 在中, 答:操作平台离地面的高度约为【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算