《北京市朝阳区2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市朝阳区2023届中考考前最后一卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算结果是x5的为()Ax10x2 Bx6x Cx2x3 D(x3)22长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A205万BCD
2、3已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )ABCD4如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15,ACD45,若l1、l2之间的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m5已知函数yax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c40的根的情况是A有两个相等的实数根B有两个异号的实数根C有两个不相等的实数根D没有实数根6某单位组织职工开展植树活动,植树量与人数之间关
3、系如图,下列说法不正确的是()A参加本次植树活动共有30人B每人植树量的众数是4棵C每人植树量的中位数是5棵D每人植树量的平均数是5棵7下列说法正确的是( )A掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定C“明天降雨的概率为”,表示明天有半天都在降雨D了解一批电视机的使用寿命,适合用普查的方式8如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D109如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴
4、正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(),SABC=1,OF=5,点B的坐标为(2,2.5)A1个B2个C3个D4个10不等式组的解集在数轴上表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若OEC的面积为12,则k=_12如图,AB=AC,ADBC,若BAC=80,则DAC=_13如图,AD=DF=FB,DEFGBC,则S:S:S=_.14如图,线段AC=n+1(其中n为正整数),点B在
5、线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到AME当AB=1时,AME的面积记为S1;当AB=2时,AME的面积记为S2;当AB=3时,AME的面积记为S3;当AB=n时,AME的面积记为Sn当n2时,SnSn1= 15每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_16若mn=4,则2m24mn+2n2的值为_17抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_三、解答题(共7小题,满分69分)18(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周
6、中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费若只考虑收费,这两位家长应该选择哪家旅行社更合算?19(5分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若
7、购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?20(8分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD、BC(1)求点A、B、D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求
8、出a的值,若不能,请说明理由.21(10分)先化简再求值:(a),其中a2cos30+1,btan4522(10分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,
9、按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值23(12分)如图,ABAD,ACAE,BCDE,点E在BC上求证:ABCADE;(2)求证:EACDEB24(14分)某商店准备购进甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价进价)参考答
10、案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:Ax10x2=x8,不符合题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C2、C【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5106,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|1;解不等式得,x2;不等式组的解集为:x2,在数轴上表示为:故
11、选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、12【解析】设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作ENOC于点N,交AB于点M,则OA=MN=,已知OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明BMEONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得=k,解方程求得k值即可.【详解】设AD=
12、a,则AB=OC=2a,点D在反比例函数y=的图象上,D(a,),OA=,过点E 作ENOC于点N,交AB于点M,则OA=MN=,OEC的面积为12,OC=2a,EN=,EM=MN-EN=-=;设ON=x,则NC=BM=2a-x,ABOC,BMEONE,,即,解得x=,E(,),点E在在反比例函数y=的图象上,=k,解得k=,k0,k=12.故答案为:12.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.12、50【解析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答【详解】解:AB=AC,BAC=80,B=C=(18080)2=50
13、;ADBC,DAC=C=50,故答案为50【点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等13、1:3:5【解析】DEFGBC,ADEAFGABC,AD=DF=FB,AD:AF:AB=1:2:3, =1:4:9,S:S:S=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质相似三角形的面积比等于相似比的平方14、【解析】连接BE,在线段AC同侧作正方形ABMN及正方形BCEF,BEAMAME与AMB同底等高AME的面积=AMB的面积当AB=n时,AME的面积为,当AB=n1时,AME的面积为当n2时,15、2【解析】设第n层有a
14、n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an2n2”,再代入n2029即可求出结论【详解】设第n层有an个三角形(n为正整数),a22,a22+23,a322+25,a423+27,an2(n2)+22n2当n2029时,a20292202922故答案为2【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an2n2”是解题的关键16、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:117、m1【解析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式0,即可得出关于m的
15、一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.三、解答题(共7小题,满分69分)18、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(
16、1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元由题意:y甲=300.9m=27m,y乙=300.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲y乙时,27m24m+48,m16,当y甲y乙时,27m24m+48,m16,答:当学生人数为16人时,两个旅行社的费用一样当学生人数为大于1
17、6人时,乙旅行社比较合算当学生人数为小于16人时,甲旅行社比较合算【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.19、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购
18、买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键20、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆. 【解析】【分析】
19、(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:当AODBPC时,根据相似三角形性质得,解得:a= 3(舍去);AODCPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)y
20、=(x-a)(x-3)(0a3)与x轴交于点A、B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即 ,解得:a= 3(舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD,取BD中点M,D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a2=5或a2=9
21、,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.21、;【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得【详解】原式(),当a2cos30+12+1+1,btan451时,原式【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值22、问题
22、1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1000+1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为123、(1)详见解析;(2)详见解析【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出DABEAC,再利用三角形内角和定理求出DEBDAB,即可说明EACDEB【详解】解:(1)在ABC和ADE中 ABC
23、ADE(SSS);(2)由ABCADE,则DB,DAEBACDAEABEBACBAE,即DABEAC设AB和DE交于点O,DOABOE,DB,DEBDABEACDEB【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用24、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【解析】(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得
24、到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润【详解】(1)设购进甲种商品x件,购进乙商品y件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(100a)件,根据题意列得:,解得:20a22,总利润W=5a+10(100a)=5a+1000,W是关于a的一次函数,W随a的增大而减小,当a=20时,W有最大值,此时W=900,且10020=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键