《北京市和平街一中学2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市和平街一中学2023届中考数学考前最后一卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )A-2B2C-4D42“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了2
2、5%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD3某班要从9名百米跑成绩各不相同的同学中选4名参加4100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A平均数B中位数C众数D方差4如图所示的图形,是下面哪个正方体的展开图()ABCD5下列图形不是正方体展开图的是()ABCD6一、单选题点P(2,1)关于原点对称的点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)7如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=
3、4,那么线段AD与AB的比等于()A25:24B16:15C5:4D4:38BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD9如图,点D在ABC边延长线上,点O是边AC上一个动点,过O作直线EFBC,交BCA的平分线于点F,交BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A2ACE=BAC+BBEF=2OCCFCE=90D四边形AFCE是矩形10如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,
4、则y与x所满足的函数关系式为()A正比例函数y=kx(k为常数,k0,x0)B一次函数y=kx+b(k,b为常数,kb0,x0)C反比例函数y=(k为常数,k0,x0)D二次函数y=ax2+bx+c(a,b,c为常数,a0,x0)11下列四个式子中,正确的是()A =9B =6C()2=5D=412如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5
5、mD6 m二、填空题:(本大题共6个小题,每小题4分,共24分)13用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_14抛物线y2x2+3x+k2经过点(1,0),那么k_15已知x1,x2是方程x2+6x+30的两实数根,则的值为_16分解因式:_.17如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 18如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,第n(n是正整数)个图案中的基础图形个数为
6、_ (用含n的式子表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算:sin45(2)解不等式组:20(6分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 21(6分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元
7、包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB(1)如图是yB与x之间函数关系的图象,请根据图象填空:m ;n ;(2)写出yA与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么22(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G求证:ADECBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论23(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查
8、问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.24(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投
9、篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明25(10分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由26(12分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确
10、的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?27(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包
11、括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:过点P作PQx轴于点Q,OPQ的面积为2,|=2,k0,k=-1故选:C【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考
12、题型2、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量工作效率结合提前 30 天完成任务,即可得出关于x的分式方程详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即故选C点睛:考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键3、B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数故选B.4、D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详
13、解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.5、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,
14、不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.6、A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1)故选A【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数7、A【解析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出RtAHERtCFG,再由勾股定理及直角三角形的面积公式即可解答【详解】1=2,3=4,2+3=90,HEF=90,同理四边形EFGH的其它内角都是9
15、0,四边形EFGH是矩形,EH=FG(矩形的对边相等),又1+4=90,4+5=90,1=5(等量代换),同理5=7=8,1=8,RtAHERtCFG,AH=CF=FN,又HD=HN,AD=HF,在RtHEF中,EH=3,EF=4,根据勾股定理得HF=5,又HEEF=HFEM,EM=,又AE=EM=EB(折叠后A、B都落在M点上),AB=2EM=,AD:AB=5:=25:1故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等8、D【解析】连接CD,再利用勾股定理分别计算出AD、AC
16、、BD的长,然后再根据勾股定理逆定理证明ADC=90,再利用三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=909、D【解析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2ACE=BAC+B,EF=2OC,FCE=90,进而得到结论【详解】解:ACD是ABC的外角,ACD=BAC+B,CE平分DCA,ACD=2ACE,2ACE=BAC+B,故A选项正确;EFBC,CF平分BCA,BCF=CFE,BCF=ACF,ACF=EFC,OF=OC,同理
17、可得OE=OC,EF=2OC,故B选项正确;CF平分BCA,CE平分ACD,ECF=ACE+ACF=180=90,故C选项正确;O不一定是AC的中点,四边形AECF不一定是平行四边形,四边形AFCE不一定是矩形,故D选项错误,故选D【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质10、C【解析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到A=B,利用等角对等边可得出三角形QAB为等腰三角形,
18、由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由FQO与OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到QOE=QOF=A=B,再由切线长定理得到OD与OC分别为EOG与FOG的平分线,得到DOC为EOF的一半,即DOC=A=B,又GCO=FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成
19、反比例函数,即可得到正确的选项【详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,AE,BF为圆O的切线,OEAE,OFFB,AEO=BFO=90,在RtAEO和RtBFO中,RtAEORtBFO(HL),A=B,QAB为等腰三角形,又O为AB的中点,即AO=BO,QOAB,QOB=QFO=90,又OQF=BQO,QOFQBO,B=QOF,同理可以得到A=QOE,QOF=QOE,根据切线长定理得:OD平分EOG,OC平分GOF,DOC=EOF=A=B,又GCO=FCO,DOCOBC,同理可以得到DOCDAO,DAOOBC,ADBC=AOOB=AB2,即xy=AB2为定值,设k=A
20、B2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k0,x0)故选C【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识11、D【解析】A、表示81的算术平方根;B、先算-6的平方,然后再求的值;C、利用完全平方公式计算即可;D、=【详解】A、9,故A错误;B、-=-6,故B错误;C、()2=2+2+3=5+2,故C错误;D、=4,故D正确故选D【点睛】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键12、D【
21、解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:,解得r=考点:弧长的计算14、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.15、1【解析】试题分析:,是方程的两实数根,由韦达定理,知,=1,即的值是1故答案为1考点:根与系数的关系16、 (x+y)(x-y)【解析】
22、直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).17、【解析】解:设E(x,x),B(2,x+2),反比例函数 (k0,x0)的图象过点B. E.x2=2(x+2), ,(舍去), ,故答案为18、3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)2x1【解析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解
23、答本题【详解】(1)sin45=3-+-5+=3-+3-5+1=7-5;(2)(2) 由不等式,得x-2,由不等式,得x1,故原不等式组的解集是-2x1【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法20、(1)10;(2)0.9;(3)44%【解析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可【详解】(1)这一周该网站访问总量为:0.5+1+0
24、.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,星期日学生日访问总量为:330%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:=44%;故答案为44%考点:折线统计图;条形统计图21、(1)10,50;(2)见解析;(3)当0x30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x30时,选择B方式上网学习合算【解析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得yA与x之间的函数关系式为:当x25时,yA=7;当x25时
25、,yA=7+(x25)0.01;(3)先求出yB与x之间函数关系为:当x50时,yB=10;当x50时,yB=10+(x50)600.01=0.6x20;然后分段求出哪种方式上网学习合算即可【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)yA与x之间的函数关系式为:当x25时,yA=7,当x25时,yA=7+(x25)600.01,yA=0.6x8,yA=;(3)yB与x之间函数关系为:当x50时,yB=10,当x50时,yB=10+(x50)600.01=0.6x20,当0x25时,yA=7,yB=50,yAyB,选择A方式上网学习合算,当25x50时yA=yB,
26、即0.6x8=10,解得;x=30,当25x30时,yAyB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当30x50,yAyB,选择B方式上网学习合算,当x50时,yA=0.6x8,yB=0.6x20,yAyB,选择B方式上网学习合算,综上所述:当0x30时,yAyB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x30时,yAyB,选择B方式上网学习合算【点睛】本题考查一次函数的应用22、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件
27、,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出2+3=90即ADB=90,所以判定四边形AGBD是矩形【详解】解:证明:四边形是平行四边形,点、分别是、的中点,在和中,解:当四边形是菱形时,四边形是矩形证明:四边形是平行四边形,四边形是平行四边形四边形是菱形,即四边形是矩形【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:SSS,SAS,AAS,ASA23
28、、(1)100,108;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,此次共抽查了:2020%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360=108. (2)喜欢用短信的人数为:1005%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:15004
29、0%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2
30、= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好25、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为26、 (1) 乙在整理数据时漏了一
31、个数据,它在169.5174.5内;(答案不唯一);(2)120;(3)160或1;(4).【解析】(1)对比图与图,找出图中与图不相同的地方;(2)则159.5164.5这一部分的人数占全班人数的比乘以360;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆
32、心角的度数为2060360=120,故答案为120;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1故答案为160或1;(4)列树状图得:P(一男一女)=27、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为
33、w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式