《山东省菏泽市牡丹区第二十一初级中学2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽市牡丹区第二十一初级中学2023年中考三模数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )ABCD2一元二次方程x2+kx3=0的一
2、个根是x=1,则另一个根是( )A3B1C3D23甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )A甲的速度是70米/分B乙的速度是60米/分C甲距离景点2100米D乙距离景点420米4对于任意实数k,关于x的方程的根的情况为A有两个相等的实数根B没有实数根C有两个不相等的实数根D无法确定5计算 的结果是( )Aa2B-a2C
3、a4D-a46关于的方程有实数根,则满足( )AB且C且D7据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9.29109B9.291010C92.91010D9.2910118将5570000用科学记数法表示正确的是( )A5.57105 B5.57106 C5.57107 D5.571089如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A20 B16 C12 D810以坐标原点为圆心,以2个单位为半径画O,下面的点中,在O上的是()A(1,1)B(,)C(1,3)D(1,)二
4、、填空题(本大题共6个小题,每小题3分,共18分)11某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.12在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_13把两个同样大小的含45角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD=_14若,则_15如图,在矩形ABCD中,点E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩
5、形ABCD内部将AF延长交边BC于点G若,则 (用含k的代数式表示)16若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_三、解答题(共8题,共72分)17(8分)在中, , 是的角平分线,交于点 .(1)求的长;(2)求的长.18(8分)如图,BC是路边坡角为30,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37和60(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37060,cos370.80,tan370.7
6、5)19(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x0)的图象交于点B(2,n),过点B作BCx轴于点C,点D(33n,1)是该反比例函数图象上一点求m的值;若DBC=ABC,求一次函数y=kx+b的表达式20(8分)如图,反比例y=的图象与一次函数y=kx3的图象在第一象限内交于A(4,a)(1)求一次函数的解析式;(2)若直线x=n(0n4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若ABC是等腰直角三角形,求n的值21(8分)计算:4cos30+20180+|1|22(10分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程
7、如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.23(12分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.24先化简,再求值:,其中x=,y=参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一
8、球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.2、C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根设m、n是方程x2+kx3=0的两个实数根,且m=x=1;则有:mn=3,即n=3;故选C【考点】根与系数的关系;一元二次方程的解3、D【解析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=70米/分,故A正确,不符合题意;设乙的速度为x米/分则有,660+24x-7024=420,解得x=60,故B正确,本选项不符合题意,7030=2100,故选项C正确,不符合题意,2
9、460=1440米,乙距离景点1440米,故D错误,故选D【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题4、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:a=1,b=,c=,此方程有两个不相等的实数根故选C5、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键6、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的
10、范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义7、B【解析】科学记数法的表示形式为a1n的形式,其中1|a|1,n为整数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.2911故选B【点睛】此题
11、考查科学记数法表示较大的数的方法,准确确定a与n值是关键8、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于5570000有7位,所以可以确定n=71=1【详解】5570000=5.57101所以B正确9、B【解析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】四边形ABCD是平行四边形,OA=OC,AE=EB,OE=BC,AE+EO=4,2AE+2EO=8,AB+BC=8,平行四边形ABCD的周长=28=16,故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位
12、线定理,属于中考常考题型10、B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2,因此点在圆外D选项(1,) 到坐标原点的距离为2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、28【解析】设标价为x元,那么0.9x-21=2120%,x=28.12、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的
13、长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割13、 【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论【详解】如图,过点A作AFBC于F,在RtABC中,B=45,BC=AB=2,BF=AF=AB=1,两个同样大小的含45角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DF-BC=1+-2=-1,故答案为-1【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键14、【解析】=.15、。
14、【解析】试题分析:如图,连接EG,设,则。点E是边CD的中点,。ADE沿AE折叠后得到AFE,。易证EFGECG(HL),。在RtABG中,由勾股定理得: ,即。(只取正值)。16、8【解析】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.三、解答题(共8题,共72分)17、(1)10;(2)的长为【解析】(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1) 在中, ;(2 )过点作于,平分,在和中 , .设,则在中, 解得即的长为【点睛】本题考查了角平分线上的点
15、到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理18、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,DBH=60,DHB=90,BDH=30,CBH=30,CBD=BDC=30,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是
16、学会添加常用辅助线,构造直角三角形解决问题.19、(1)-6;(2)【解析】(1)由点B(2,n)、D(33n,1)在反比例函数(x0)的图象上可得2n=33n,即可得出答案;(2)由(1)得出B、D的坐标,作DEBC延长DE交AB于点F,证DBEFBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得【详解】解:(1)点B(2,n)、D(33n,1)在反比例函数(x0)的图象上,解得:;(2)由(1)知反比例函数解析式为,n=3,点B(2,3)、D(6,1),如图,过点D作DEBC于点E,延长DE交AB于点F,在DBE和FBE中,DBE=FBE,BE=BE,BED=BEF=90
17、,DBEFBE(ASA),DE=FE=4,点F(2,1),将点B(2,3)、F(2,1)代入y=kx+b,解得:,【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长20、(1)y=x3(2)1【解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3)设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么OED=45根据平行线的性质得到BCA=OED=45,所以当ABC是等腰直角三角形时只有AB=AC一种情况过点A作
18、AFBC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可【详解】解:(1)反比例y=的图象过点A(4,a),a=1,A(4,1),把A(4,1)代入一次函数y=kx3,得4k3=1,k=1,一次函数的解析式为y=x3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n3)设直线y=x3与x轴、y轴分别交于点D、E,如图,当x=0时,y=3;当y=0时,x=3,OD=OE,OED=45直线x=n平行于y轴,BCA=OED=45,ABC是等腰直角三角形,且0n4,只有AB=AC一种情况,过点A作AFBC于F,则BF=FC,F(n,1),1=1(n
19、3),解得n1=1,n2=4,0n4,n2=4舍去,n的值是1【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中21、【解析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得【详解】原式=【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质22、证明见解析【解析】解:,.是一元二次方程的根. ,.23、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念24、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=