《山东省菏泽东明县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽东明县联考2023届初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD2下列运算中,正确的是()A(ab2)2=a2b4 Ba2+a2=2a4 Ca2a3=a6
2、Da6a3=a23下列方程中,没有实数根的是()Ax22x=0Bx22x1=0Cx22x+1 =0Dx22x+2=04如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )ABC D 5下列计算正确的是()A(2a)22a2Ba6a3a2C2(a1)22aDaa2a26在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为27下列四个函数图象中,当x0 时,x 的取值范围为_.16如图,在ABC中,BC=7,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆
3、外,那么PB的取值范围_.17已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_18我国明代数学家程大位的名著直指算法统宗里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BEDC(1)判断直线AC与圆
4、O的位置关系,并证明你的结论;(2)若AC8,cosBED,求AD的长20(6分)在平面直角坐标系xOy中,抛物线y=mx22mx3(m0)与x轴交于A(3,0),B两点(1)求抛物线的表达式及点B的坐标;(2)当2x3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M若经过点C(4.2)的直线y=kx+b(k0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围21(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海
5、拔高度约为1400米,由B处望山脚A处的俯角为30,由B处望山脚C处的俯角为45,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据1.732)22(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每
6、月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.23(8分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由24(10分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩小明和小刚都在本周日上午去游玩的概率为_;求他们三人在同一个半天去游玩的概率2
7、5(10分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE26(12分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间27(12分)如图,在RtABC中,C=90,AC=AB求证:B=30请填空完成下列证明证明:如
8、图,作RtABC的斜边上的中线CD,则 CD=AB=AD ( )AC=AB,AC=CD=AD 即ACD是等边三角形A= B=90A=30参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键2、A【解析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析
9、得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2a3=a5,故此选项错误;D、a6a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键3、D【解析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可【详解】A、=(2)2410=40,方程有两个不相等的实数根,所以A选项错误;B、=(2)241(1)=80,方程有两个不相等的实数根,所以B选项错误;C、=(2)2411=0,方程有两个相等的实数根,所以C选项错误;D、=(2)2412
10、=40,方程没有实数根,所以D选项正确故选D4、B【解析】根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5、C【解析】解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D, 原式=故选C6、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛
11、】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型7、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8、B【解析】设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:,当时,(亿),400-
12、375=25,该行可贷款总量减少了25亿.故选B.9、B【解析】先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k0),C(c,0),则B(c,b),E(c, ),设D(x,y),D和E都在反比例函数图象上,xy=k, 即 ,四边形ODBC的面积为3, bc=4 k0 解得k=2,故答案为:B.【点睛】本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.10、A【解析】本题首先利用A点
13、恰好落在边CD上,可以求出ACBC1,又因为AB可以得出ABC为等腰直角三角形,即可以得出ABA、DBD的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA和面积DAD【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出ABADBD45,即可以求得扇形ABA的面积为,扇形BDD的面积为,面积ADA面积ABCD面积ABC扇形面积ABA;面积DAD扇形面积BDD面积DBA面积BAD,阴影部分面积面积DAD+面积ADA【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.11、C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、
14、平方差公式分别计算即可得出答案【详解】A、a3a2=a5,故A选项错误;B、a2=,故B选项错误;C、32=,故C选项正确;D、(a+2)(a2)=a24,故D选项错误,故选C【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键12、B【解析】利用多边形的外角和是360,正多边形的每个外角都是36,即可求出答案【详解】解:3603610,所以这个正多边形是正十边形故选:B【点睛】本题主要考查了多边形的外角和定理是需要识记的内容二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:连接AA,根据勾股定理求出A
15、C=AC,及AA的长,然后根据勾股定理的逆定理得出ACA为等腰直角三角形,然后根据弧长公式求解即可.详解:连接AA,如图所示AC=AC=,AA=,AC2+AC2=AA2,ACA为等腰直角三角形,ACA=90,点A走过的路径长=2AC=故答案为: 点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等解决问题的关键是找出变换的规律,根据弧长公式求解14、【解析】如图,连接EF,点E、点F是AD、DC的中点,AE=ED,CF=DF=CD=AB=1,由折叠的性质可得AE=AE,AE=DE,在RtEAF和RtEDF中, ,RtEAFRtEDF(H
16、L),AF=DF=1,BF=BA+AF=AB+DF=2+1=3,在RtBCF中,BC=AD=BC=2 点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明RtEAFRtEDF,得出BF的长,再利用勾股定理解答即可15、x1【解析】分析:题目要求 kx+b0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.详解:kx+b0,一次函数的图像在x 轴上方时,x的取值范围为:x1.故答案为x1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.16、【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围详解:作ADBC于点D,作PEB
17、C于点E在ABC 中,BC=7,AC=3,tanC=1,AD=CD=3,BD=4,AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上ADBC,PEBC,PEAD,BPEBDA,即,得:BP=故答案为0PB 点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答17、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位
18、线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质18、【解析】根据100个和尚分100个馒头,正好分完大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可【详解】设大和尚x人,小和尚y人,由题意可得故答案为【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组三、解答题:(本大题共9个小题,共
19、78分,解答应写出文字说明、证明过程或演算步骤19、(1)AC与O相切,证明参见解析;(2).【解析】试题分析:(1)由于OCAD,那么OAD+AOC=90,又BED=BAD,且BED=C,于是OAD=C,从而有C+AOC=90,再利用三角形内角和定理,可求OAC=90,即AC是O的切线;(2)连接BD,AB是直径,那么ADB=90,在RtAOC中,由于AC=8,C=BED,cosBED=,利用三角函数值,可求OA=6,即AB=12,在RtABD中,由于AB=12,OAD=BED,cosBED=,同样利用三角函数值,可求AD试题解析:(1)AC与O相切弧BD是BED与BAD所对的弧,BAD=B
20、ED,OCAD,AOC+BAD=90,BED+AOC=90,即C+AOC=90,OAC=90,ABAC,即AC与O相切;(2)连接BDAB是O直径,ADB=90,在RtAOC中,CAO=90,AC=8,ADB=90,cosC=cosBED=,AO=6,AB=12,在RtABD中,cosOAD=cosBED=,AD=ABcosOAD=12=考点:1.切线的判定;2.解直角三角形20、(1)抛物线的表达式为y=x22x2,B点的坐标(1,0);(2)y的取值范围是3y1(2)b的取值范围是b【解析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式
21、,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)将A(2,0)代入,得m=1, 抛物线的表达式为y=-2x-2 令-2x-2=0,解得:x=2或x=-1, B点的坐标(-1,0) (2)y=-2x-2=-3当-2x1时,y随x增大而减小,当1x2时,y随x增大而增大,当x=1,y最小=-3 又当x=-2,y=1, y的取值范围是-3y1(2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+当直线y=kx+b经过(0,-2)和点(3,2)时,
22、解析式为y=x-2由函数图象可知;b的取值范围是:-2b【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.21、隧道最短为1093米【解析】【分析】作BDAC于D,利用直角三角形的性质和三角函数解答即可【详解】如图,作BDAC于D,由题意可得:BD=14001000=400(米),BAC=30,BCA=45,在RtABD中,tan30=
23、,即,AD=400(米),在RtBCD中,tan45=,即,CD=400(米),AC=AD+CD=400+4001092.81093(米),答:隧道最短为1093米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.22、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元(2)有6种购买方案(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台【解析】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备台,乙型设
24、备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可【详解】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备台,乙型设备台,则,,取非负整数,有6种购买方案;(3)由题意:,为4或5,当时,购买资金为:(万元),当时,购买资金为:(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元
25、一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.23、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于
26、、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论24、(1);(2)【解析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,
27、其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,他们三人在同一个半天去游玩的概率为=答:他们三人在同一个半天去游玩的概率是【点睛】本题考查的是用列表法或树状图法求概率注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件25、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90,AC=DF,ABCDEF, AB=DE.26、
28、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可试题解析:(1)a、b满足a4=0,b6=0,解得a=4,b=6,点B的坐标是(4,6),故答案是:4,6,(4,6);(2)点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动,24=8,OA=4,OC=6
29、,当点P移动4秒时,在线段CB上,离点C的距离是:86=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:52=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.27、直角三角形斜边上的中线等于斜边的一半;1【解析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可【详解】证明:如图,作RtABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),AC=AB,AC=CD=AD 即ACD是等边三角形,A=1,B=90A=30【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练