山东省肥城市湖屯镇初级中学2022-2023学年中考二模数学试题含解析.doc

上传人:lil****205 文档编号:87995420 上传时间:2023-04-19 格式:DOC 页数:19 大小:852KB
返回 下载 相关 举报
山东省肥城市湖屯镇初级中学2022-2023学年中考二模数学试题含解析.doc_第1页
第1页 / 共19页
山东省肥城市湖屯镇初级中学2022-2023学年中考二模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《山东省肥城市湖屯镇初级中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省肥城市湖屯镇初级中学2022-2023学年中考二模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,矩形中,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )A3B4CD52下列成语描述的事件为随机事件的是()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼3如

2、图,在RtABC中,BAC90,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62,那么DBF的度数为()A62B38C28D264如图,AB是O的直径,点C、D是圆上两点,且AOC126,则CDB()A54B64C27D375下列所述图形中,是轴对称图形但不是中心对称图形的是( )A线段B等边三角形C正方形D平行四边形6下列实数中,无理数是()A3.14B1.01001CD7如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )A1B2C3D48如图,在矩形ABCD中,AB=5,BC=7,点E为

3、BC上一动点,把ABE沿AE折叠,当点B的对应点B落在ADC的角平分线上时,则点B到BC的距离为( )A1或2B2或3C3或4D4或593的相反数是( )A3B3CD10如图,在ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC4,ABC的周长为23,则ABD的周长为()A13B15C17D1911的负倒数是()AB-C3D312如图,RtABC中,C=90,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D8二、填空题:(本大题共6个小题,每小题4分,共24分)13不等式组的最小整数解是_14方程的解是_.15如图,的半径为,点,都在

4、上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)16已知ab1,那么a2b22b_17如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_18已知方程的一个根为1,则的值为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点A(m,m1),B(m1,2m3)都在反比例函数的图象上(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式20(6分)如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交

5、CE的延长线于点D(1)求证:DB=DE;(2)若AB=12,BD=5,求O的半径. 21(6分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率22(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的

6、高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?23(8分)如图,菱形ABCD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQBD,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2

7、)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由24(10分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/件)x

8、+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.25(10分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(

9、3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)26(12分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数第9个数第n个数A组65258n22n5B组1471025(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明27(12分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确”请回答:小楠的作图依据是_参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要

10、求的)1、B【解析】连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求【详解】连接DF,四边形ABCD是矩形 在中, 故选:B【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键2、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.3、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE

11、(SAS), DBF=DAE=9062=28 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键4、C【解析】由AOC126,可求得BOC的度数,然后由圆周角定理,求得CDB的度数【详解】解:AOC126,BOC180AOC54,CDBBOC27故选:C【点睛】此题考查了圆周角定理注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、B【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;B、等边三角形,是轴对称图形但不是中心对称图

12、形,故本选项符合题意;C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C【点睛】本题主要考查无理数的定义,属于简单题7、C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为

13、2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.8、A【解

14、析】连接BD,过点B作BMAD于M设DM=BM=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B到BC的距离【详解】解:如图,连接BD,过点B作BMAD于M,点B的对应点B落在ADC的角平分线上,设DM=BM=x,则AM=7x,又由折叠的性质知AB=AB=5,在直角AMB中,由勾股定理得到:,即,解得x=3或x=4,则点B到BC的距离为2或1故选A【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键9、A【解析】试题分析:根据相反

15、数的概念知:1的相反数是1故选A【考点】相反数10、B【解析】DE垂直平分AC,AD=CD,AC=2EC=8,CABC=AC+BC+AB=23,AB+BC=23-8=15,CABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.11、D【解析】根据倒数的定义,互为倒数的两数乘积为1,2=1再求出2的相反数即可解答【详解】根据倒数的定义得:2=1因此的负倒数是-2故选D【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.12、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知A

16、B=8,两等圆A,B外切,两圆的半径均为4,A+B=90,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案详解: .解不等式得:x-3,解不等式得:x1,不等式组的解集为-3x1,不等式组的最小整数解是-1,故答案为:-1点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键14、.【解析】根据解分式方程的步骤依次计算可

17、得.【详解】解:去分母,得:,解得:,当时,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论.15、【解析】根据题意先利用旋转的性质得到BOD=120,则AOD=150,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120后恰好与扇形COD重合,BOD=120,AOD=AOB+BOD=30+120=150,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.16、1【解析】解:a+b=1,原式= 故答案为

18、1.【点睛】本题考查的是平方差公式的灵活运用.17、1-1【解析】设两个正方形的边长是x、y(xy),得出方程x21,y29,求出x,y1,代入阴影部分的面积是(yx)x求出即可【详解】设两个正方形的边长是x、y(xy),则x21,y29,x,y1,则阴影部分的面积是(yx)x(11故答案为11【点睛】本题考查了二次根式的应用,主要考查学生的计算能力18、1【解析】欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值【详解】设方程的另一根为x1,又x=1,解得m=1故答案为1【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题此

19、题也可将x=1直接代入方程3x2-9x+m=0中求出m的值三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)m3,k12;(2)或【解析】【分析】(1)把A(m,m1),B(m3,m1)代入反比例函数y,得km(m1)(m3)(m1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)点A(m,m1),B(m3,m1)都在反比例函数y的图像上,kxy,km(m1)(m3)(m1),m2mm22m3,解得m3,k3(31)12.

20、(2)m3,A(3,4),B(6,2)设直线AB的函数表达式为ykxb(k0),则 解得 直线AB的函数表达式为yx6.(3)M(3,0),N(0,2)或M(3,0),N(0,2)解答过程如下:过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.由(1)知:A(3,4),B(6,2),APPM2,BPPN3,四边形ANMB是平行四边形,此时M(3,0),N(0,2)当M(3,0),N(0,2)时,根据勾股定理能求出AMBN,ABMN,即四边形AMNB是平行四边形故M(3,0),N(0,2)或M(3,0),N(0,2)【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数

21、的性质.20、(1)证明见解析;(2) 【解析】试题分析:(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)DCOA, 1+3=90, BD为切线,OBBD, 2+5=90, OA=OB, 1=2,3=4,4=5,在DEB中, 4=5,DE=DB.(2)作DFAB于F,连接OE,DB=DE, EF=BE=3,在 RTDEF中,EF=3,DE=BD=5,EF=3 , DF=sinDEF= , AOE=DEF, 在RTAOE中,sinAOE= , AE=6, AO=.【点睛】本题

22、考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.21、(1)50,360;(2) 【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共

23、8种考点:1、扇形统计图,2、条形统计图,3、概率22、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=

24、10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当y=1x-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程

25、,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程23、 (1) S=2(0t1); (2) ;(3)见解析.【解析】(1)如图1,根据S=SABC-SAPQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值【详解】解:(1)如图1,

26、四边形ABCD是菱形,ABD=DBC=ABC=60,ACBD,OAB=30,AB=20,OB=10,AO=10,由题意得:AP=4t,PQ=2t,AQ=2t,S=SABCSAPQ,=,= ,=2t2+100(0t1);(2)如图2,在RtAPM中,AP=4t,点Q关于O的对称点为M,OM=OQ,设PM=x,则AM=2x,AP=x=4t,x=,AM=2PM=,AM=AO+OM,=10+102t,t=;答:当t为秒时,点P、M、N在一直线上;(3)存在,如图3,直线PN平分四边形APMN的面积,SAPN=SPMN,过M作MGPN于G, ,MG=AP,易得APHMGH,AH=HM=t,AM=AO+O

27、M,同理可知:OM=OQ=102t,t=10=102t,t=答:当t为秒时,使得直线PN平分四边形APMN的面积【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.24、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品

28、销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大

29、值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元25、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.【解析】(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结

30、论【详解】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得:解得:答:甲、乙两组工作一天,商店各应付300元和140元(2)单独请甲组需要的费用:30012=3600元.单独请乙组需要的费用:24140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利20012=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利2008=1600元,相当于损失5120元;因为512060008160,所以甲乙合作损失费用最少,答:甲乙

31、合作施工更有利于商店.【点睛】考查列二元一次方程组解实际问题的运用,工作总量=工作效率工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键26、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析【解析】(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,9,时对应的数分别为31-2,32-2,33-2,39-2,由此可归纳出第n个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题【详解】解:(1)A组第n个数为n2-2n-5,A组第4个数是42-24-5=3,故

32、答案为3;(2)第n个数是理由如下:第1个数为1,可写成31-2;第2个数为4,可写成32-2;第3个数为7,可写成33-2;第4个数为10,可写成34-2;第9个数为25,可写成39-2;第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,解之得,由于是正整数,所以不存在列上两个数相等【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键27、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【解析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD

33、=CD,由此可得到小楠的作图依据【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定和性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁