《山东省阳谷县重点达标名校2023届中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省阳谷县重点达标名校2023届中考数学五模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )ABCD2计算(2017)0()1+
2、tan30的结果是()A5B2C2D13关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D04如图,内接于,若,则ABCD5如图,将ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为1若AA=1,则AD等于()A2B3CD6如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H给出如下几个结论:AEDDFB;S四边形BCDG=;若AF=2DF,则BG=6GF;CG与BD一定不垂直;BGE的大小为定值其中正确的结论个数为(
3、)A4B3C2D17计算|3|的结果是()A1 B5 C1 D58-5的相反数是( )A5BCD9如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD10如图,四边形ABCD中,ADBC,B=90,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD211如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )A线段EF的长逐渐增长B线段EF的长逐渐减小C线段EF的长始终不变D线段EF的
4、长与点P的位置有关12关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A且BC且D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,四边形ABCD是菱形,DAB50,对角线AC,BD相交于点O,DHAB于H,连接OH,则DHO_度14计算:_15如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF若AB=2,AD=3,则tanAEF的值是_16如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40,点A旋转到A的位置,则图中阴影部分的面积为_(结果保留)17计算:=_18化简:_.三、解答题:
5、(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由20(6分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE
6、,CE,求证:BE=CE21(6分)车辆经过润扬大桥收费站时,4个收费通道 AB、C、D中,可随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率22(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率23(8分)制作一种产品,需先将材料加热达到60后,再进行操作,设该材料温度为y()从加热开始计算的时间为x(min)据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图)已知在操作
7、加热前的温度为15,加热5分钟后温度达到60分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?24(10分)我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?25(10分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若ABAC,试判断四边形ADCF的形状
8、,并证明你的结论26(12分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围27(12分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总
9、利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】函数一次函数的图像及性质2、A【解析】试题分析:原式=1(3)+=1+3+1=5,故选A3、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可【详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+
10、x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑4、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键5、A【解析】分析:由SABC=9、SAEF=1且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAEDAB知,据此求解可得详解:如图,SABC=9
11、、SAEF=1,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到ABC,AEAB,DAEDAB,则,即,解得AD=2或AD=-(舍),故选A点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点6、B【解析】试题分析:ABCD为菱形,AB=AD,AB=BD,ABD为等边三角形,A=BDF=60,又AE=DF,AD=BD,AEDDFB,故本选项正确;BGE=BDG+DBF=BDG+GDF=60=BCD,即BGD+BCD=180,点B、C、D、G四点共圆,BGC=BDC=60,DGC=D
12、BC=60,BGC=DGC=60,过点C作CMGB于M,CNGD于N(如图1),则CBMCDN(AAS),S四边形BCDG=S四边形CMGN,S四边形CMGN=2SCMG,CGM=60,GM=CG,CM=CG,S四边形CMGN=2SCMG=2CGCG=,故本选项错误;过点F作FPAE于P点(如图2),AF=2FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=2AE,FP:BE=FP:AE=1:6,FPAE,PFBE,FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;当点E,F分别是AB,AD中点时(如图3),由(1)知,ABD,BDC为等边三角形,点E,F分别是A
13、B,AD中点,BDE=DBG=30,DG=BG,在GDC与BGC中,DG=BG,CG=CG,CD=CB,GDCBGC,DCG=BCG,CHBD,即CGBD,故本选项错误;BGE=BDG+DBF=BDG+GDF=60,为定值,故本选项正确;综上所述,正确的结论有,共3个,故选B考点:四边形综合题7、B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值【详解】原式 故选:B【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键8、A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.9、A【解析】分析:根据从上面看得到的图形是俯视图,可得答
14、案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图10、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=
15、5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理11、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C考点:1、矩形性质,2、勾股定理,3、三角形的中位线12、A【解析】根据一元二次方程的系数结合根的判别式1,即可得出关于m的
16、一元一次不等式,解之即可得出实数m的取值范围【详解】关于x的一元二次方程x22x(m1)=1有两个不相等的实数根,=(2)241(m1)=4m1,m1故选B【点睛】本题考查了根的判别式,牢记“当1时,方程有两个不相等的实数根”是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:四边形ABCD是菱形,OD=OB,COD=90,DHAB,OH=BD=OB,OHB=OBH,又ABCD,OBH=ODC,在RtCOD中,ODC+DCO=90,在RtDHB中,DHO+OHB=90,DHO=DCO=50=1.考点:菱形的性质14、【解析】原式= =.故答案为:.15、
17、1【解析】连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证ABFFCE,进一步可得到AFE是等腰直角三角形,则AEF=45.【详解】解:连接AF,E是CD的中点,CE=,AB=2,FC=2BF,AD=3,BF=1,CF=2,BF=CE,FC=AB,B=C=90,ABFFCE,AF=EF,BAF=CFE,AFB=FEC,AFE=90,AFE是等腰直角三角形,AEF=45,tanAEF=1.故答案为:1.【点睛】本题结合三角形全等考查了三角函数的知识.16、【解析】【分析】根据题意可得出阴影部分的面积等于扇形ABA的面积加上半圆面积再减去半圆面积【详
18、解】S阴影=S扇形ABA+S半圆-S半圆=S扇形ABA=,故答案为.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.17、3【解析】先把化成,然后再合并同类二次根式即可得解.【详解】原式=2.故答案为【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式18、【解析】根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) y=x24x+2;(2) 点B的坐标
19、为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度
20、,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120可得出DAB+DCO=120,即BAD和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,7)(1)BAD和DCO互补,理由如
21、下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DCO,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120,DAB+DCO=120,BAD和DCO互补【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一
22、次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明ABDNBA是解(1)的关键.20、证明见解析.【解析】要证明BE=CE,只要证明EABEDC即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题【详解】证明:四边形ABCD是矩形,AB=CD,BAD=CDA=90,ADE是等边三角形,AE=DE,EAD=EDA=60,EAD=EDC,在EAB和EDC中, EABEDC(SAS),BE=CE【点睛】本题考查矩形的性质、等边三角形
23、的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答21、(1);(2)【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论试题解析:(1)选择 A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,选择不同通道通过的概率=22、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图
24、可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比23、(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a0),由题意
25、得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0x5)停止加热时,设y=(k0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟答:从开始加热到停止操作,共经历了20分钟24、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设BD=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解
26、】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为6(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题25、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中
27、点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形26、(1);(2)【解析】(1)将和两点代入函数解析式即可;(2)结合二次函数图象即可【详解】解:(1)二次函数与轴交于和两点,解得二次函数的表达式为 (2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题
28、的关键是熟悉二次函数的性质27、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,
29、经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100x)=100x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键