《山西省吕梁市柳林县2023届高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山西省吕梁市柳林县2023届高三下第一次测试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对2设集合,若,则( )AB
2、CD3已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元4的展开式中的项的系数为( )A120B80C60D405已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD6我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直
3、径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的体积公式).A2寸B3寸C4寸D5寸7已知中,角、所对的边分别是,则“”是“”的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充分必要条件8相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为( )ABCD9已知复数满足,则( )ABCD10等比数列若则( )A6B6C-6D11根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研
4、,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()ABCD12在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_.14展开式中的系数为_.(用数字做答)15在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为_.16将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤
5、。17(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角18(12分)如图,在四棱锥中,底面为直角梯形,平面底面,为的中点,是棱上的点且,.求证:平面平面以;求二面角的大小.19(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.20(12分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.21(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,
6、射线的极坐标方程为,射线的极坐标方程为.()写出曲线的极坐标方程,并指出是何种曲线;()若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.22(10分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其
7、和等于的概率故选:.【点睛】本题考查古典概型概率问题的求解,属于基础题.2、A【解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.3、D【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万
8、元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.4、A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.5、A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐
9、近线方程.6、B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.7、D【解析】由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“” 是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题8、B【解析】根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,不满足判断条件;第次循环:,不满足判断条件;第次循环:,满足判断条件;输出结果.故选:【点睛
10、】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.9、A【解析】根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.10、B【解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.11、A【解析】每个县区至少派一位专家,基本事件总数,甲,乙两位
11、专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.12、A【解析】根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二
12、倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.14、210【解析】转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理
13、解,转化划归,数学运算的能力,属于中档题.15、3或-1【解析】设,分别令、,两式相减即可得,即可得解.【详解】设,令,则, 令,则,则-得,则,解得或.故答案为:3或-1.【点睛】本题考查了二项式定理的应用,考查了运算能力,属于中档题.16、【解析】先求出基本事件总数6636,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率【详解】基本事件总数6636,点数之和是6包括共5种情况,则所求概率是故答案为【点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)
14、;(2)或【解析】(1)先由题意得出 ,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.【详解】(1)由题可知圆只能经过椭圆的上下顶点,所以椭圆焦距等于短轴长,可得,又点在椭圆上,所以,解得,即椭圆的方程为. (2)圆的方程为,当直线不存在斜率时,解得,不符合题意;当直线存在斜率时,设其方程为,因为直线
15、与圆相切,所以,即. 将直线与椭圆的方程联立,得:,判别式,即,设,则,所以,解得, 所以直线的倾斜角为或.【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单.18、证明见解析;.【解析】推导出,从而平面,由此证明平面平面以;以为原点,建立空间直角坐标系,利用法向量求出二面角的大小.【详解】解:,为的中点,四边形为平行四边形,.,,即.又平面平面,且平面平面,平面.
16、平面,平面平面.,为的中点,.平面平面,且平面平面,平面.如图,以为原点建立空间直角坐标系,则平面的一个法向量为,设,则,在平面中,设平面的法向量为,则,即,平面的一个法向量为,由图知二面角为锐角,所以所求二面角大小为.【点睛】本题考查面面垂直的证明,考查二面角的大小的求法,考查了空间向量的应用,属于中档题.19、(1)(2)【解析】(1)零点分段法,分,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又
17、由题意知:,即,故的范围为.【点睛】本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.20、(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同
18、时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.21、(),曲线是以为圆心,为半径的圆;().【解析】()由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程()令,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【详解】解:()由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.()令,面积的取值范围为【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题22、(1);(2)见解析.【解析】(1)根据题意得出关于、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、,由,得.,则有,由,得,由,可得,综上,点在定直线上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.