《山东省青岛市黄岛区开发区致远中学2023年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市黄岛区开发区致远中学2023年高考冲刺押题(最后一卷)数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )ABCD2在中,为边上的中点,且,则( )ABCD3已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )ABCD4函数(),当时,的值
2、域为,则的范围为( )ABCD5设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD6已知平面,直线满足,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件7已知为实数集,则( )ABCD8在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD9已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( )ABCD10( )ABC1D11某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )ABCD12已知向量,
3、则( )ABC()D( )二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则_14已知椭圆:的左、右焦点分别为,如图是过且垂直于长轴的弦,则的内切圆方程是_.15在面积为的中,若点是的中点,点满足,则的最大值是_.16下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆C:(ab0)的两个焦点分
4、别为F1(,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1k32k2,试求m,n满足的关系式.18(12分)已知中,角,的对边分别为,已知向量,且(1)求角的大小;(2)若的面积为,求19(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,均为正实数,且满足.证明:.20(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的
5、使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用最小二乘法求与的回归直线方程;叫做篮球馆月惠值,根据的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,21(12分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.22(10分)己知,函数.(
6、1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.2、A【解析】由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上
7、的中点,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.3、A【解析】先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题当时,没有零点,所以命题是假命题所以是真命题,是假命题,是假命题,是假命题故选:【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平.4、B【解析】首先由,可得的范
8、围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.5、B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.6、A【解析】,是相交平面,直线平面,则“” “”,反之,直线满足,则或/或平面,即可判断出结论【详解】解:已知直线平面
9、,则“” “”,反之,直线满足,则或/或平面, “”是“”的充分不必要条件故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力7、C【解析】求出集合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题8、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点
10、由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.9、B【解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【点睛】本题考查导数在判断函数单调性中的应
11、用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.10、A【解析】利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【详解】,因此,.故选:A.【点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.11、A【解析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,( c为半焦距; a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意
12、半焦距与长半轴的求法,是解题的关键,属于中档题.12、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据垂直向量的坐标表示可得出关于实数的等式,即可求得实数的值.【详解】,且,则,解得.故答案为
13、:.【点睛】本题考查利用向量垂直求参数,涉及垂直向量的坐标表示,考查计算能力,属于基础题.14、【解析】利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【详解】由已知,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.【点睛】本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.15、【解析】由任意三角形面积公式与构建关系表示|AB|AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由ABC的面积为得|AB
14、|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由与的平方和得:|AB|AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.16、32【解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【点睛】本题考查分层抽样中求样本容量,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步
15、骤。17、(1);(2)mn10【解析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1k3表示为直线l斜率的关系式,化简后得k1k32,于是可得m,n的关系式.试题解析:(1)由题意,c,b1,所以a故椭圆C的方程为(2)当直线l的斜率不存在时,方程为x1,代入椭圆得,y不妨设A(1,),B(1,)因为k1k32又k1k32k2,所以k21所以m,n的关系式为1,即mn10当直线l的斜率存在时,设l的方程为yk(x1)将yk(x1)代入,整理得:(3k21)x26k2x3k230
16、设A(x1,y1),B(x2,y2),则又y1k(x11),y2k(x21)所以k1k32所以2k22,所以k21所以m,n的关系式为mn10综上所述,m,n的关系式为mn10.考点:椭圆标准方程,直线与椭圆位置关系,18、(1);(2)【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得. 试题解析:(1),即 ,又,又,(2),又,即,故19、(1);(2)见解析【解析】(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),的最大值为4.关于的不等式有解
17、等价于,()当时,上述不等式转化为,解得,()当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知,所以,又,当且仅当时,等号成立,即,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.20、(1)见解析,12.5(2)20【解析】(1) 运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2) 由公式可计算的值,进而可求与的回归直线方程;求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】解:(1)抽样比为,所以分别是,6,7,8,5所以
18、两数之和所有可能取值是:10,12,13,15,所以分布列为期望为(2)因为所以,;,设,所以当递增,当递减所以约惠值最大值时的值为20【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.21、 (1);(2).【解析】(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值【详解】(1),即,变形得:,整理得:,又,;(2),由正弦定理知,当且仅当时取最大值故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题22、(1);(2)【解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题