《山东省青岛西海岸新区第七中学2022-2023学年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛西海岸新区第七中学2022-2023学年中考数学模拟试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A、B若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+42对于反比例函数,
2、下列说法不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限C当x0时,y随x的增大而增大D当x0时,y随x的增大而减小3如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD4若二次函数的图象经过点(1,0),则方程的解为( )A,B,C,D,5如图,ABC中,AB=
3、5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为( )A2.3B2.4C2.5D2.66在平面直角坐标系中,若点A(a,b)在第一象限内,则点B(a,b)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限7在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线8一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小
4、;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确9如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得 BC=6 米,CD=4 米,BCD=150,在 D 处测得电线杆顶端 A 的仰 角为 30,则电线杆 AB 的高度为( )ABCD10在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D11二、填空题(共7小题,每小题3分,满分21分)11如图,数轴上
5、点A表示的数为a,化简:a_12我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为_13如图,在梯形ABCD中,ADBC,A=90,点E在边AB上,AD=BE,AE=BC,由此可以知道ADE旋转后能与BEC重合,那么旋转中心是_14尺规作图:过直线外一点作已知直线的平行线已知:如图,直线l与直线l外一点P求作:过点P与直线l平行的直线作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3
6、)过点P、M作直线;(4)直线PM即为所求请回答:PM平行于l的依据是_15RtABC中,AD为斜边BC上的高,若, 则 16已知m、n是一元二次方程x2+4x10的两实数根,则_17如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_.三、解答题(共7小题,满分69分)18(10分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据 从
7、学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min): 30 60 81 50 40 110 130 146 90 100 60 81 120 140 70 81 10 20 100 81整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数38分析数据 补全下列表格中的统计量:平均数中位数众数80得出结论 (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ; (2)如果该校现有学生400人,估计等级为“”的学生有多少名? (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52
8、周计算)平均阅读多少本课外书?19(5分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG20(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对
9、第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)21(10分)如图,AB是O的直径,点C是O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分ACB,交AB点F,连接BE(1)求证:AC平分DAB;(2)求证:PCPF;(3)若tanABC,AB14,求线段PC的长22(10分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内
10、的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率23(12分)如图,已知在ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长24(14分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)
11、所示的是一辆自行车的实物图图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm点A、C、E在同一条直线上,且CAB=75(参考数据:sin75=0.966,cos75=0.259,tan75=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫
12、过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D2、C【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x0时,y随x的增大而减小,所以C错误;D中,当x0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化3、C【解析】根据图象
13、起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势4、C【解析】二次函数的图象经过点(1,0),方程一定有
14、一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点5、B【解析】试题分析:在ABC中,AB=5,BC=3,AC=4,AC2+BC2=32+42=52=AB2,C=90,如图:设切点为D,连接CD,AB是C的切线,CDAB,SABC=ACBC=ABCD,ACBC=ABCD,即CD=,C的半径为,故选B考点:圆的切线的性质;勾股定理6、D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】点A(a,-b)在第一象限内,a0,-b0,b0,点B(a,b)在第四象限,故选
15、D【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负7、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C8、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(
16、1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN
17、,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大9、B【解析】延长AD交BC的延长线于E,作DFBE于F,BCD=150,DCF=30,又CD=4,DF=2,CF= =2,由题意得E=30,EF= ,BE=BC+CF+EF=6+4,AB=BEtanE=(6+4)=(2+4)米,即电线杆的高度为(2+4)米点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.10、B【解析】试题解析:D、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=
18、AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2(2+)=1故选B二、填空题(共7小题,每小题3分,满分21分)11、1【解析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可【详解】由数轴可得:0a1,则a+=a+=a+(1a)=1故答案为1【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键12、4.41【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是
19、负数【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.41,故答案为4.41【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值13、CD的中点【解析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论【详解】ADE旋转后能与BEC重合,ADEBEC,AED=BCE,B=A=90,ADE=BEC,DE=EC,AED+BEC=90,DEC=90,DEC是等腰直角三角形,D与E,E与C是对应顶点,CD的中点到D,E,C三点的距离相等,旋转中心是
20、CD的中点,故答案为:CD的中点【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念14、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【解析】利用画法得到PMAB,BMPA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PMAB【详解】解:由作法得PMAB,BMPA,四边形ABMP为平行四边形,PMAB故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已
21、知角的角平分线;过一点作已知直线的垂线)也考查了平行四边形的判定与性质15、【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题【详解】如图,CAB=90,且ADBC,ADB=90,CAB=ADB,且B=B,CABADB,(AB:BC)1=ADB:CAB,又SABC=4SABD,则SABD:SABC=1:4,AB:BC=1:116、1【解析】先由根与系数的关系求出mn及m+n的值,再把化为 的形式代入进行计算即可【详解】m、n是一元二次方程x2+1x10的两实数根,m+n1,mn1, 1故答案为1【点睛】本题考查的是根与系数的关系,将根与系数的关系
22、与代数式变形相结合解题是一种经常使用的解题方法一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x2 17、(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标【详解】“卒”的坐标为(2,2),故答案是:(2,2)【点睛】考查了坐标确定位置,关键是正确确定原点位置三、解答题(共7小题,满分69分)18、(1)填表见解析;(2)160名;(3)平均数;26本.【解析】【分析】先确定统计表中的C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;(1)根据统计量,结合统计表进行估计即可;(2)用“B”等级人数所占
23、的比例乘以全校的学生数即可得;(3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.【详解】整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数3584分析数据 补全下列表格中的统计量:平均数中位数众数808181得出结论(1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,故答案为:B;(2) 820400=160 该校等级为“”的学生有160名; (3) 选统计量:平均数8052160=26 ,该校学生每人一年平均阅读26本课外书.【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求
24、解方法是关键.19、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x=
25、(负根已经舍弃),AB=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰
26、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题20、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在
27、第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.21、(1)(2)证明见解析;(3)1【解析】(1)由PD切O于点C,AD与过点C的切线垂直,易证得OCAD,继而证得AC平分DAB;(2)由条件可得CAO=PCB,结合条件可得PCF=PFC,即可证得PC=PF;(3)易证PACPCB,由相似三角形的性质可得到 ,又因为tanABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在RtPOC中,利用勾股定理可得P
28、C2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长【详解】(1)证明:PD切O于点C,OCPD,又ADPD,OCAD,ACO=DACOC=OA,ACO=CAO,DAC=CAO,即AC平分DAB;(2)证明:ADPD,DAC+ACD=90又AB为O的直径,ACB=90PCB+ACD=90,DAC=PCB又DAC=CAO,CAO=PCBCE平分ACB,ACF=BCF,CAO+ACF=PCB+BCF,PFC=PCF,PC=PF;(3)解:PAC=PCB,P=P,PACPCB,又tanABC=,设PC=4k,PB=3k,则在RtPOC中,PO=3k+7,OC=7,PC2+O
29、C2=OP2,(4k)2+72=(3k+7)2,k=6 (k=0不合题意,舍去)PC=4k=46=1【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质22、(1);(2).【解析】【分析】(1)根据题意可求得2个“2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角
30、为3602120120,转动转盘一次,求转出的数字是2的概率为;(2)由(1)可知,该转盘转出“1”、“3”、“2”的概率相同,均为,所有可能性如下表所示:第一次 第二次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比23、(1)12(2)y=(0x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用
31、三角形的面积公式即可得;(2)先证明BPDBAC,得到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AHBC于点H ,则AHB=90,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=83=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0x5); (3)APD90,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90时, ,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.24、63cm.【解析】试题分析:(1)在Rt ACD,AC45,DC60,根据勾股定理可得AD 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AEAC+CE,在直角 EFA中,根据EFAEsin75可求出EF的长度,即为点E到车架档AB的距离;试题解析: