《山东省菏泽市名校2023届中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽市名校2023届中考数学模拟试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%
2、下降到3.1%,将830万用科学记数法表示为()A83105B0.83106C8.3106D8.31072如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD3已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是Ax11,x21Bx11,x22Cx11,x20Dx11,x234已知一元二次方程有一个根为2,则另一根为A2B3C4D85如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0)
3、,顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个6对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解7如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D48下列成语描述的事件为随机事件的是()A水涨船高
4、B守株待兔 C水中捞月 D缘木求鱼9下列基本几何体中,三视图都是相同图形的是()ABCD10如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得 BC=6 米,CD=4 米,BCD=150,在 D 处测得电线杆顶端 A 的仰 角为 30,则电线杆 AB 的高度为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状)请从下面的A
5、、B两题中任选一题作答,我选择_A、按照小明的要求搭几何体,小亮至少需要_个正方体积木B、按照小明的要求,小亮所搭几何体的表面积最小为_12如图,AB=AC,ADBC,若BAC=80,则DAC=_13中国古代的数学专著九章算术有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻互换其中一只,恰好一样重”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为_14阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ACB是ABC的一个内角求作:APBACB小明的做法如下:如图作线段AB的垂直平分线m;作线段BC的垂直平分线n,与直线m交于点O;以点O为圆心,OA为半径
6、作ABC的外接圆;在弧ACB上取一点P,连结AP,BP所以APBACB老师说:“小明的作法正确”请回答:(1)点O为ABC外接圆圆心(即OAOBOC)的依据是_;(2)APBACB的依据是_15如图,将AOB以O为位似中心,扩大得到COD,其中B(3,0),D(4,0),则AOB与COD的相似比为_16如图ABC中,AB=AC=8,BAC=30,现将ABC绕点A逆时针旋转30得到ACD,延长AD、BC交于点E,则DE的长是_17如图,在中,AB为直径,点C在上,的平分线交于D,则_三、解答题(共7小题,满分69分)18(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点
7、四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)19(5分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.
8、09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理由20(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元求A市
9、投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?21(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字3、1、0、2,除数字不同外,这四个球没有任何区别从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率22(10分)如图,已知是的外接圆,圆心在的外部,求的半径.23(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(
10、件与销售价(元/件)之间的函数关系如图所示求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24(14分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角ABC为14,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因(参考数据:sin14=0.24,cos14=0.97,tan14=0.25)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】科学记数法,是指把一个大于10(或者小于
11、1)的整数记为a10n的形式(其中1| a| 10|)的记数法.【详解】830万=8300000=8.3106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.2、B【解析】ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0x2时,y2xx,当P点由B运动到C点时,即2x4时,y222,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围3、B【解析】试题分析:二次函数(m为常数)的
12、图象与x轴的一个交点为(1,0),故选B4、C【解析】试题分析:利用根与系数的关系来求方程的另一根设方程的另一根为,则+2=6, 解得=1考点:根与系数的关系5、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,
13、n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4a
14、c0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点6、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解7、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出
15、AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得
16、:DE=(+)),k=-DEOE=-(+))(-))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键8、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.9、C【解析】根据主视图、左视图、俯视图的定义,可得答案【详解】球的三视图都是圆,故选C【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键10、B【解析】延长AD
17、交BC的延长线于E,作DFBE于F,BCD=150,DCF=30,又CD=4,DF=2,CF= =2,由题意得E=30,EF= ,BE=BC+CF+EF=6+4,AB=BEtanE=(6+4)=(2+4)米,即电线杆的高度为(2+4)米点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、A, 18, 1 【解析】A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;B、分别得到前后面,上下面,左右面的面积,相加即可求解【详解】A、小亮所搭几何
18、体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,该长方体需要小立方体432=36个,小明用18个边长为1的小正方体搭成了一个几何体,小亮至少还需36-18=18个小立方体,B、表面积为:2(8+8+7)=1故答案是:A,18,1【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.12、50【解析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答【详解】解:AB=AC,BAC=80,B=C=(18080)2=50;ADBC,DAC=C=50,故答案为50【点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角
19、相等13、【解析】设每只雀、燕的重量各为x两,y两,由题意得: 故答案是:或 14、线段垂直平分线上的点与这条线段两个端点的距离相等;等量代换 同弧所对的圆周角相等 【解析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论(2)根据同弧所对的圆周角相等即可得出结论【详解】(1)如图2中,MN垂直平分AB,EF垂直平分BC,OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),OA=OB=OC(等量代换)故答案是: (2),APB=ACB(同弧所对的圆周角相等)故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等
20、【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质15、3:1【解析】AOB与COD关于点O成位似图形,AOBCOD,则AOB与COD的相似比为OB:OD=3:1,故答案为3:1 (或)16、 【解析】过点作于,根据三角形的性质及三角形内角和定理可计算再由旋转可得,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.【详解】如图,过点作于, ,将绕点逆时针旋转,使点落在点处,此时点落在点处, 在中, ,在中,故答案为【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形
21、的性质,含角的直角三角形的三边关系,旋转图形的性质17、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得到AC=BD,再证明EF=FG即
22、可(3)四边形EFGH是正方形,只要证明EHG=90,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,E
23、F=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形19、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x0);当一次复印页数不超过20
24、时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断【详解】解:(1)当x=10时,甲复印店收费为:0,110=1;乙复印店收费为:0.1210=1.2;当x=30时,甲复印店收费为:0,130=3;乙复印店收费为:0.1220+0.0910=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x0);y2=;(3)顾客在乙复印店复印花费少;当x70时,y1=0.1x,y2=0.09x+0.6,设y=y1y2,y1y2=0.1x(0.0
25、9x+0.6)=0.01x0.6,设y=0.01x0.6,由0.010,则y随x的增大而增大,当x=70时,y=0.1x70时,y0.1,y1y2,当x70时,顾客在乙复印店复印花费少【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键20、 (1) 40%;(2) 2616.【解析】(1)设A市投资“改水工程”的年平均增长率是x根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可【详解】解:(1)设A市投资“改水工程”年平均增长
26、率是x,则解之,得或(不合题意,舍去)所以,A市投资“改水工程”年平均增长率为40% (2)6006001.411762616(万元)A市三年共投资“改水工程”2616万元21、(1);(2)【解析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率【详解】(1)正数为2,所以该球上标记的数字为正数的概率为;(2)画树状图为:共有12种等可能的结果数,它们是(3,1)、(3,0)、(3,2)、(1,0)、(1,2)、(0,2)、(1,3)、(0,3)、(2,3)、(0,1)、(2,1)、(2
27、,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率22、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.23、(1) (2),144元【解析】(1)利用待定系数法求解可得关于的函数解析式;(2)根据“总利润每件的利润销售量”可得函数解析式,
28、将其配方成顶点式,利用二次函数的性质进一步求解可得【详解】(1)设与的函数解析式为,将、代入,得:,解得:,所以与的函数解析式为;(2)根据题意知,当时,随的增大而增大,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质24、客车不能通过限高杆,理由见解析【解析】根据DEBC,DFAB,得到EDF=ABC=14在RtEDF中,根据cosEDF=,求出DF的值,即可判断.【详解】DEBC,DFAB,EDF=ABC=14在RtEDF中,DFE=90,cosEDF=,DF=DEcosEDF=2.55cos142.550.972.1限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,客车不能通过限高杆【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.