山东省肥城市2023年中考数学仿真试卷含解析.doc

上传人:lil****205 文档编号:87995227 上传时间:2023-04-19 格式:DOC 页数:20 大小:759.50KB
返回 下载 相关 举报
山东省肥城市2023年中考数学仿真试卷含解析.doc_第1页
第1页 / 共20页
山东省肥城市2023年中考数学仿真试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《山东省肥城市2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省肥城市2023年中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的

2、)1不等式组的正整数解的个数是()A5B4C3D22某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分3一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为()AB2C2D44下列各式属于最简二次根式的有( )ABCD5如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点

3、为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)6为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A平均数 B中位数 C众数 D方差7将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD8某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)1213141516人数12252A2,14岁B2,15岁C19岁,20岁D15岁,15岁9对于实数x,我们规定x表示不大于x的最大整数,如4=4,=1,2.5=3

4、.现对82进行如下操作:82 =9 =3 =1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A1B2C3D410某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()ABCD11已知抛物线y=x2-2mx-4(m0)的顶点M关于坐标原点O的对称点为M,若点M在这条抛物线上,则点M的坐标为()A(1,-5)B(3,-13)C(2,-8)D(4,-20)12一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是()A120B135C150D165二、填空题:(

5、本大题共6个小题,每小题4分,共24分)13我国经典数学著作九章算术中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 14计算:(3+1)(31)= 15如图,直线l经过O的圆心O,与O交于A、B两点,点C在O上,AOC=30,点P是直线l上的一个动点(与圆心O不重合),直线CP与

6、O相交于点Q,且PQ=OQ,则满足条件的OCP的大小为_16如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上时,折痕EF的长为_17一个几何体的三视图如左图所示,则这个几何体是( )ABCD18某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AD,BE,AFDC求证:BCEF20(6分)如图1,已知扇形MON的半径为,MON=90,

7、点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.21(6分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业已知小岛P在A港的北偏东60方向,在B港的北偏西45方向,小岛P距海岸线MN的距离为30海里求AP,BP的长(参考数据:1.4,1.7,2.2);甲、乙两船分别从A,B两港口同时出

8、发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?22(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,)23(8分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60求ABC的度数;求证:AE是O的切线;当BC=4时,求劣弧AC的长24(10分

9、)如图,O的半径为4,B为O外一点,连结OB,且OB6.过点B作O的切线BD,切点为点D,延长BO交O于点A,过点A作切线BD的垂线,垂足为点C(1)求证:AD平分BAC;(2)求AC的长25(10分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形26(12分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、求此抛物线的解析式求此抛物线顶点的坐标和四边形的面积27(12分)关于x的一元二次方程ax2+bx+1=1当b=a+2时,利用根的

10、判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】先解不等式组得到-1x3,再找出此范围内的正整数【详解】解不等式1-2x3,得:x-1,解不等式2,得:x3,则不等式组的解集为-1x3,所以不等式组的正整数解有1、2、3这3个,故选C【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.2、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一

11、个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数3、B【解析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解【详解】解:圆内接正六边形的边长是1

12、,圆的半径为1那么直径为2圆的内接正方形的对角线长为圆的直径,等于2圆的内接正方形的边长是1故选B【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答4、B【解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;故选:B【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键5、D【解析】先根据反射角等于入射角先找出

13、前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.6、D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差故选D【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用7、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边

14、长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.8、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平

15、均数)为中位数【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1故选D【点睛】本题主要考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数9、C【解析】分析:x表示不大于x的最大整数,依据题目中提供的操作进行计算即可详解:121对121只需进行3次操作后变为1.故选C点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.10、C【解析

16、】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比11、C【解析】试题分

17、析:=,点M(m,m21),点M(m,m2+1),m2+2m21=m2+1解得m=2m0,m=2,M(2,8)故选C考点:二次函数的性质12、C【解析】这个扇形的圆心角的度数为n,根据弧长公式得到20=,然后解方程即可【详解】解:设这个扇形的圆心角的度数为n,根据题意得20=,解得n=150,即这个扇形的圆心角为150故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)二、填空题:(本大题共6个小题,每小题4分,共24分)13、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点

18、:由实际问题抽象出一元二次方程;勾股定理的应用14、1【解析】根据平方差公式计算即可【详解】原式=(3)2-12=18-1=1故答案为1【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键15、40【解析】:在QOC中,OC=OQ,OQC=OCQ,在OPQ中,QP=QO,QOP=QPO,又QPO=OCQ+AOC,AOC=30,QOP+QPO+OQC=180,3OCP=120,OCP=4016、4或4.【解析】当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过E作EHMN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到AH=,根据勾

19、股定理列方程即可得到结论;当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过A作HGBC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论【详解】当AFAD时,如图1,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,AF=AF,FAE=A=90,设MN是BC的垂直平分线,则AM=AD=3,过E作EHMN于H,则四边形AEHM是矩形, MH=AE=2,AH=,AM=,MF2+AM2=AF2,(3-AF)2+()2=AF2,AF=2,EF=4;当AFAD时,如图2,将AEF沿EF折叠,当

20、折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,AF=AF,FAE=A=90,设MN是BC的垂直平分线,过A作HGBC交AB于G,交CD于H,则四边形AGHD是矩形,DH=AG,HG=AD=6,AH=AG=HG=3,EG=,DH=AG=AE+EG=3,AF=6,EF=4,综上所述,折痕EF的长为4或4,故答案为:4或4【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键17、A【解析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的

21、三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.18、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础三、解答题:(本大题共9个小题,共7

22、8分,解答应写出文字说明、证明过程或演算步骤19、证明见解析.【解析】想证明BC=EF,可利用AAS证明ABCDEF即可【详解】解:AFDC,AF+FCFC+CD,ACFD,在ABC 和DEF 中,ABCDEF(AAS)BCEF【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)O

23、DBM,ABOM,ODM=BAM=90ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90,90,45,BOA=290BOA90,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角

24、形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键21、(1)AP60海里,BP42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】(1)过点P作PEAB于点E,则有PE=30海里,由题意,可知PAB=30,PBA=45,从而可得 AP60海里,在RtPEB中,利用勾股定理即可求得BP的长; (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PEMN,垂足为E,由题意,得PAB906030,PBA904545,PE

25、30海里,AP60海里,PEMN,PBA45,PBEBPE 45,PEEB30海里,在RtPEB中,BP3042海里,故AP60海里,BP42(海里); (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得,解得x20,经检验,x20是原方程的解,甲船的速度为1.2x1.22024(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.22、 (1)AB1395 米;(2)没有超速【解析】(1)先根据tanADC2求

26、出AC,再根据ABC35结合正弦值求解即可(2)根据速度的计算公式求解即可.【详解】解:(1)ACBC,C90,tanADC2,CD400,AC800,在RtABC中,ABC35,AC800,AB1395 米;(2)AB1395,该车的速度55.8km/h60千米/时,故没有超速【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.23、(1)60;(2)证明略;(3)【解析】(1)根据ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60;(2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90,结合ABC=60求得BAC=3

27、0,从而推出BAE=90,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60且O的半径等于4,可得劣弧AC所对的圆心角AOC=120,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60; (2)AB是O的直径,ACB=90BAC=30,BAE=BAC+EAC=30+60=90,即BAAE,AE是O的切线;(3)如图,连接OC,OB=OC,ABC=60,OBC是等边三角形,OB=BC=4,BOC=60,AOC=120,劣弧AC的长为=【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.2

28、4、(1)证明见解析;(2)AC=【解析】(1)证明:连接ODBD是O的切线,ODBDACBD,ODAC,21OAOD11,12,即AD平分BAC(2)解:ODAC,BODBAC,即解得25、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB

29、,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形26、 ;【解析】(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=SABC+SBCD可求得四边形ABDC的面积【详解】由已知得:,把与坐标代入得:,解得:,则解析式为;,抛物线顶点坐标为,则【点睛】二次函数的综合应用解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形27、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁