山西省朔州市第三中学2022-2023学年中考一模数学试题含解析.doc

上传人:lil****205 文档编号:87995220 上传时间:2023-04-19 格式:DOC 页数:19 大小:841KB
返回 下载 相关 举报
山西省朔州市第三中学2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共19页
山西省朔州市第三中学2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《山西省朔州市第三中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山西省朔州市第三中学2022-2023学年中考一模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD2在实数,中,其中最小的实数是()ABCD3弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成

2、员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是( )A90和87.5B95和85C90和85D85和87.54若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B14C15D255如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果下面有三个推断:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟此实验,则当投掷次数为100

3、0时,“钉尖向上”的频率一定是0.1其中合理的是()ABCD6某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A1000(1+x)2=1000+500B1000(1+x)2=500C500(1+x)2=1000D1000(1+2x)=1000+5007方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=38如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D309如图所示的图形为四位同学画

4、的数轴,其中正确的是( )ABCD10如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明AOBAOB的依据是()ASASBSSSCAASDASA二、填空题(共7小题,每小题3分,满分21分)11如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边ABC的顶点C的坐标为_12有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_13如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tanAOC=,反比例函数y=的图象经过

5、点C,与AB交于点D,若COD的面积为20,则k的值等于_.14已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 15在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_16已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”或“减小”)17如图,点A,B在反比例函数(k0)的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且BCE的面积是ADE的

6、面积的2倍,则k的值是_三、解答题(共7小题,满分69分)18(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,ABBC,同一时刻,光线与水平面的夹角为72,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米)(参考数据:sin720.95,cos720.31,tan723.08)19(5分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿

7、路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?20(8分)先化简(a1),并从0,1,2中选一个合适的数作为a的值代入求值21(10分)计算: ()2 - 8sin6022(10分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解

8、析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y0,试比较ac与l的大小,并说明理由23(12分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论24(14分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),

9、连接OB,交反比例函数y=的图象于点P求反比例函数y=的表达式;求点B的坐标;求OAP的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大

10、于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小3、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的

11、中位数4、C【解析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】三角形的两边长分别为5和7,2第三条边12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.5、B【解析】当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;由图可知频数稳定在了0.618,所以估计频率为0.618,正确;.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1

12、.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.6、A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b7、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1

13、)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)8、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理9、D【

14、解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.10、B【解析】由作法易得OD=OD,OC=OC,CD=CD,根据SSS可得到三角形全等【详解】由作法易得ODOD,OCOC,CDCD,依据SSS可判定CODCOD,故选:B【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理二、填空题(共7小题,每小题3分,满分21分)11、(2016, +1)【解析】据轴对称判断出点C变换后在x

15、轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可【详解】解:ABC是等边三角形AB312,点C到x轴的距离为1+2+1,横坐标为2,C(2, +1),第2018次变换后的三角形在x轴上方,点C的纵坐标为+1,横坐标为2201812016,所以,点C的对应点C的坐标是(2016,+1)故答案为:(2016,+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键12、 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6

16、共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13、24【解析】分析:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,由tanAOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2SCOD=40=OACF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,四边形ABCO是菱形,ABCO,AOBC,

17、DEAO,四边形AOED和四边形DECB都是平行四边形,SAOD=SDOE,SBCD=SCDE,S菱形ABCD=2SDOE+2SCDE=2SCOD=40,tanAOC=,CF=4x,OF=3x,在RtCOF中,由勾股定理可得OC=5x,OA=OC=5x,S菱形ABCO=AOCF=5x4x=20x2=40,解得:x=,OF=,CF=,点C的坐标为,点C在反比例函数的图象上,k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,SCOD=20得到S菱形ABCO=2SCO

18、D=40.14、y=1x+1【解析】由对称得到P(1,2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换15、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-

19、1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数16、增大【解析】根据二次函数的增减性可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.17、【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示BCE的面积是ADE的面积的2倍,E是AB的中点,SABC=2SB

20、CE,SABD=2SADE,SABC=2SABD,且ABC和ABD的高均为BF,AC=2BD,OD=2OCCD=k,点A的坐标为(,3),点B的坐标为(-,-),AC=3,BD=,AB=2AC=6,AF=AC+BD=,CD=k=【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(共7小题,满分69分)18、13.1【解析】试题分析:如图,作CMAB交AD于M,MNAB于N,根据=,可求得CM的长,在RTAMN中利用三角函数求得AN的长,再由MNBC,ABCM,判定四边形MNBC是平行四边形,即可得BN的长,

21、最后根据AB=AN+BN即可求得AB的长试题解析:如图作CMAB交AD于M,MNAB于N由题意=,即=,CM=,在RTAMN中,ANM=90,MN=BC=4,AMN=72,tan72=,AN12.3,MNBC,ABCM,四边形MNBC是平行四边形,BN=CM=,AB=AN+BN=13.1米考点:解直角三角形的应用.19、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程【详解】

22、(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式20、1.【解析】试题分析:首先

23、把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解试题解析:原式=;当a=0时,原式=1考点:分式的化简求值21、4 - 2【解析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=24- 8= 24 - 4=4 - 222、()y=x2+3x当3+6S6+2时,x的取值范围为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待

24、定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=

25、x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+

26、2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式

27、,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac23、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1

28、【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键24、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=1【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由ABx轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=1,ABx轴,且AB=OA=1,点B的坐标为(9,3);(3)点B坐标为(9,3),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=(2+6)36221=1【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁