山西省运城市康杰中学2023届高考临考冲刺数学试卷含解析.doc

上传人:lil****205 文档编号:87995168 上传时间:2023-04-19 格式:DOC 页数:19 大小:2.23MB
返回 下载 相关 举报
山西省运城市康杰中学2023届高考临考冲刺数学试卷含解析.doc_第1页
第1页 / 共19页
山西省运城市康杰中学2023届高考临考冲刺数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《山西省运城市康杰中学2023届高考临考冲刺数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省运城市康杰中学2023届高考临考冲刺数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,为的外心,若,则( )ABCD2设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是( ).ABCD3为

2、研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A线性相关关系较强,b的值为1.25B线性相关关系较强,b的值为0.83C线性相关关系较强,b的值为0.87D线性相关关系太弱,无研究价值4已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD5已知集合A,则集合( )ABCD6某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况

3、如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是( )ABCD7若复数,其中是虚数单位,则的最大值为( )ABCD8已知集合,集合,则( )ABCD9已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,则的渐近线方程为( )ABCD10定义在上的函数满足,且为奇函数,则的图象可能是( )ABCD11五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD12设、是两

4、条不同的直线,、是两个不同的平面,则的一个充分条件是( )A且B且C且D且二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.14记为数列的前项和.若,则_.15在中,内角所对的边分别为,若 ,的面积为,则_ ,_16已知 ,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两

5、个函数模型:,其中均为常数,为自然对数的底数现该公司收集了近12年的年研发资金投入量和年销售额的数据,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; 参考数据:,18(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代

6、接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.19(12分)已知函数.()若,求曲线在处的切线方程;()当时,要使恒

7、成立,求实数的取值范围.20(12分)已知函数f(x)|x2|x1|.()解不等式f(x)1;()当x0时,若函数g(x)(a0)的最小值恒大于f(x),求实数a的取值范围21(12分)已知 (1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:22(10分)设函数 .(I)求的最小正周期;(II)若且,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先根据题中条件和三角形中几何关系求出,即可求出的值.【详解】如图所示过做三角形三边的垂线,垂足分别为,过分别做,的平

8、行线,由题知,则外接圆半径,因为,所以,又因为,所以,由题可知,所以,所以.故选:D.【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.2、B【解析】求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.3、B【解析】根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,

9、故选B.【点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.4、B【解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.5、A【解析】化简集合,,按交集定义,即可求解.【详解】集合,则.故选:A.【点睛】本题考查集合间的

10、运算,属于基础题.6、C【解析】计算出、,进而可得出结论.【详解】由表格中的数据可知,由频率分布直方图可知,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.7、C【解析】由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.8、C【解析】求出集合的等价条件,利用交集的定义进行求解即可.【

11、详解】解:,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.9、D【解析】根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解】如图,因为为等腰三角形,所以,,,又,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.10、D【解析】根据为奇函数,得到函数关于中心对称,排除,计算排除,得到答案.【详解】为奇函数,即,函数关于中心对称,排除.,排除.故选:.【点睛】本题考查了函数图像的识别,确定函数关于中心对称是解题的关键.11、D【解析】三个单位的人数可能为2,2,1

12、或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.12、B【解析】由且可得,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据

13、均值不等式得到,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,(当且仅当,等号成立),直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.14、1【解析】由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解【详解】由,得,且,则,即数列是以16为首项,以为公比的等比数列,则故答案为:1【点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平15、 【解析】由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,

14、即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【点睛】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案16、【解析】对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)模型的拟合程度更好;(2)(i);(ii)亿元.【解析】(1)由相关系数求出两

15、个系数,比较大小可得;(2)(i)先建立关于的线性回归方程,从而得出关于的回归方程;(ii)把代入(i)中的回归方程可得值【详解】本小题主要考查回归分析等基础知识,考查数据处理能力、运算求解能力、抽象概括能力及应用意识,考查统计与概率思想、分类与整合思想,考查数学抽象、数学运算、数学建模、数据分析等核心素养,体现基础性、综合性与应用性解:(1),则,因此从相关系数的角度,模型的拟合程度更好 (2)(i)先建立关于的线性回归方程.由,得,即由于,所以关于的线性回归方程为, 所以,则(ii)下一年销售额需达到90亿元,即,代入得,又,所以,所以,所以预测下一年的研发资金投入量约是亿元【点睛】本小题

16、主要考查抛物线的定义、抛物线的标准方程、直线与抛物线的位置关系、导数几何意义等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等,考查数学运算、直观想象、逻辑推理等核心素养,体现基础性、综合性与应用性18、(1);(2)分布列见解析,期望为【解析】(1)甲同学至少抽到2道B类题包含两个事件:一个抽到2道B类题,一个是抽到3个B类题,计算出抽法数后可求得概率;(2)的所有可能值分别为,依次计算概率得分布列,再由期望公式计算期望【详解】(1)令“甲同学至少抽到2道B类题”为事件,则抽到2道类题有种取法,抽到3道类题有种取法,;(2)的所有可能值分别为,的分

17、布列为:0123【点睛】本题考查古典概型,考查随机变量的概率分布列和数学期望解题关键是掌握相互独立事件同时发生的概率计算公式19、()()【解析】()求函数的导函数,即可求得切线的斜率,则切线方程得解;()构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【详解】()当时,则.所以.又,故所求切线方程为,即.()依题意,得,即恒成立.令,则.当时,因为,不合题意.当时,令,得,显然.令,得或;令,得.所以函数的单调递增区间是,单调递减区间是.当时,所以,只需,所以,所以实数的取值范围为.【点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中

18、档题.20、();()。【解析】()分类讨论,去掉绝对值,求得原绝对值不等式的解集;()由条件利用基本不等式求得,再由,求得的范围【详解】()当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是 ()因为,当且仅当时等号成立,所以.当时,所以所以,解得,故实数的取值范围为【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方

19、程的思想21、(1)没有极值点;(2)证明见解析【解析】(1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断;(2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证.【详解】(1)当时,所以在递增,所以,所以在递增,所以函数没有极值点.(2)由题,若存在实数,使直线与函数的图象交于不同的两点,即存在且,使.由可得,由(1)可知,可得,所以,即,下面证明,只需证明:,令,则证,即 设,那么,所以,所以,即【点睛】本题考查利用导函数求函数的极值点,考查利用导函数解决双变量问题,考查运算能力与推理论证能力.22、 (I);(II)【解析】(I)化简得到,得到周期.(II) ,故,根据范围判断,代入计算得到答案.【详解】(I) ,故.(II) ,故,故,故,故,.【点睛】本题考查了三角函数的周期,三角恒等变换,意在考查学生的计算能力和综合应用能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁