山东省菏泽一中、单县一中2023年高考冲刺押题(最后一卷)数学试卷含解析.doc

上传人:lil****205 文档编号:87994967 上传时间:2023-04-19 格式:DOC 页数:18 大小:1.76MB
返回 下载 相关 举报
山东省菏泽一中、单县一中2023年高考冲刺押题(最后一卷)数学试卷含解析.doc_第1页
第1页 / 共18页
山东省菏泽一中、单县一中2023年高考冲刺押题(最后一卷)数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《山东省菏泽一中、单县一中2023年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省菏泽一中、单县一中2023年高考冲刺押题(最后一卷)数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知i是虚数单位,则( )A B C D2一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD3圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的

2、最大值是( )ABCD4如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD5已知集合,则集合( )ABCD6某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )ABC16D327若复数满足,则(其中为虚数单位)的最大值为( )A1B2C3D48某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中

3、输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D129中,角的对边分别为,若,则的面积为( )ABCD10设命题:,则为A,B,C,D,11甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( )ABCD12若直线与曲线相切,则( )A3BC2D二、填空题:本题共4小题,每小题5分,共20分。13如图,在菱形ABCD中,AB=3,E,F分别为BC,CD上的点,若线段EF上存在一点M,使得,则_,_(本题第1空2分,第2空3分)14函数的图像如图所示,则该函数的最小正周期为_.15已知,其中,为正的常数

4、,且,则的值为_.16已知实数,满足,则目标函数的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆已知曲线上的点M对应的参数,射线与曲线交于点(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值18(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体8

5、00名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.附:0.100.050.0250.0100.005k2.7063.84

6、15.0246.6357.87919(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.20(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.21(12分)已知公差不为零的等差数列的前n项和为,是与的等比中项.

7、(1)求;(2)设数列满足,求数列的通项公式.22(10分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用复数的运算法则即可化简得出结果【详解】故选【点睛】本题考查了复数代数形式的乘除运算,属于基础题。2、B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋

8、转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.3、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题4、C【解析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值【详解

9、】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,解得,故选:C【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.5、D【解析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.6、A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.7、B【解析】根据复数的几何

10、意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.8、D【解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.9、A【解析】先求出,由

11、正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解10、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.11、D【解析】先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】

12、甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是. 故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.12、A【解析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,由得,代入得,则,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】根

13、据题意,设,则,所以,解得,所以,从而有 .14、【解析】根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可【详解】解:由,得,则,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键15、【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题16、-1【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值【详解】作出实数x,y满足对应的平面区域如图阴影所示;

14、由zx+2y1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小由,得A(1,1),此时z的最小值为z1211,故答案为1【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求解a,b,消去参数,即得曲线的直角坐标方程;再求解,利用极坐标和直角坐标的互化公式,即得曲线的直角坐标方程;(2)由于,可设,代入曲线直角坐标方程,可得的关系,转化,可得解.【详解】(1)将及对应的参数,代入得,即,所以曲线的方程为,为参数,所以曲线的直角

15、坐标方程为设圆的半径为R,由题意,圆的极坐标方程为(或),将点代入,得,即,所以曲线的极坐标方程为,所以曲线的直角坐标方程为(2)由于,故可设,代入曲线直角坐标方程,可得,所以【点睛】本题考查了极坐标和直角坐标,参数方程和一般方程的互化以及极坐标的几何意义的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1)(2)能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系(3)详见解析【解析】(1)由题意可计算后三组的频数的总数,由其成等差数列可得后三组频数,可得视力在5.0以上的频率,可得全年级视力在5.0以上的的人数;(2)由题中数据计算的值,对照临界值表可得

16、答案;(3)由题意可计算出这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,可得X可取0,1,2,分别计算出其概率,列出分布列,可得其数学期望.【详解】解:(1)由图可知,第一组有3人,第二组7人,第三组27人,因为后三组的频数成等差数列,共有(人)所以后三组频数依次为24,21,18,所以视力在5.0以上的频率为0.18,故全年级视力在5.0以上的的人数约为人(2),因此能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系.(3)调查的100名学生中不近视的共有24人,从中抽取8人,抽样比为,这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,X可取0,1,2,X的分布

17、列X012PX的数学期望.【点睛】本题主要考查频率分布直方图,独立性检测及离散型随机变量的期望与方差等相关知识,考查学生分析数据与处理数据的能力,属于中档题.19、(1),;(2)【解析】试题分析:(1)由消去参数,可得的普通方程,由可得的普通方程;(2)设为曲线上一点,点到曲线的圆心的距离,结合可得最值,的最大值为,从而得解.试题解析:(1)的普通方程为.曲线的极坐标方程为,曲线的普通方程为,即.(2)设为曲线上一点,则点到曲线的圆心的距离 .,当时,d有最大值.又P,Q分别为曲线,曲线上动点,的最大值为.20、(1)(2)(3)直线平面,证明见解析【解析】取中点,连接,则,再由已知证明平面

18、,以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系,求出平面的一个法向量(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面【详解】底面是边长为2的菱形,为等边三角形取中点,连接,则,为等边三角形,又平面平面,且平面平面,平面以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系则,1,0,0,设平面的一个法向量为由,取,得(1)证明:设直线与平面所成角为,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),又平

19、面,直线平面【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题21、(1);(2).【解析】(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【详解】(1)由题意可得即 又因为,所以,所以. (2)由条件及(1)可得. 由已知得, 所以. 又满足上式,所以【点睛】本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.22、(1);(2)10【解析】(1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程;(2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即可求解.【详解】(1)由题意,曲线C的参数方程为,消去参数,可得曲线C的普通方程为,即,又由,代入可得曲线C的极坐标方程为.(2)将代入,得,即,所以=,其中,当时,取最大值,最大值为10.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及曲线的极坐标方程的应用,着重考查了运算与求解能力,属于中档试题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁