《山西省吕梁学院附属高级中学2023年高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山西省吕梁学院附属高级中学2023年高考冲刺数学模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等2已知三棱锥中,是等边三角形,则三棱锥的外接球的表面积为( )ABCD3已知非零向量,满足,则与的夹角为( )ABCD4是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD6若集合M1,3,N1,3,5,则满足MXN的集合X的个数为()A1B2C3D47设,其中a,b是实数,则( )A1B2CD8党的十九大报告明确提出:在共
3、享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD9设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD10已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径
4、的圆过右焦点F,则双曲线离心率为ABC2D11集合,则( )ABCD12已知,则的大小关系为ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的常数项为_.14已知正实数满足,则的最小值为 15满足约束条件的目标函数的最小值是 . 16某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为_.时,可使得所用材料最省.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图1,在等腰梯形中,两腰,底边,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,分别为,的中点.(1)证明:平面.(2)求直线与
5、平面所成角的正弦值.18(12分)设函数(1)求不等式的解集;(2)若的最小值为,且,求的最小值19(12分)如图,在直三棱柱中,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.20(12分)在中,角的对边分别为.已知,且.(1)求的值;(2)若的面积是,求的周长.21(12分)自湖北武汉爆发新型冠状病毒肺炎疫情以来,在以总书记为核心的党中央的正确领导和指挥下,全国各地纷纷驰援,湖北的疫情形势很快得到了控制,但是国际疫情越来越严重,医用口罩等物资存在很大缺口.某口罩生产厂家复工复产后,抢时生产口罩,以驰援国际社会,已知该企业前10天生产的口罩量如下表所示:第天123
6、45678910产量y(单位:万个)76.088.096.0104.0111.0117.0124.0130.0135.0140.0对上表的数据作初步处理,得到一些统计量的值:mn82.53998.9570.5(1)求表中m,n的值,并根据最小二乘法求出y关于x的线性回归方程(回归方程系数精确到0.1);(2)某同学认为更适宜作为y关于x的回归方程模型,并以此模型求得回归方程为.经调查,该企业第11天的产量为145.3万个,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?并说明理由.附:,;22(10分)已知函数的最大值为2.()求函数在上的单调递减区间;()中,角所对的边分别是,且,
7、求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题2、D【解析】根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心
8、为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.3、B【解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,所以
9、,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.4、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.5、C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.6、D【解析】可以是共4个,选
10、D.7、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.8、D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D9、D【解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.若上一
11、步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.10、B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点
12、,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.11、A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.12、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底
13、而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确二、填空题:本题共4小题,每小题5分,共20分。13、160【解析】先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题14、4【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是
14、将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值15、-2【解析】可行域是如图的菱形ABCD,代入计算,知为最小.16、【解析】设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值【详解】设圆柱的高为,底面半径为.该圆柱形的如罐的容积为个立方单位,即.该圆柱形的表面积为.令,则.令,得;令,得.在上单调递减,在上单调递增.当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题三、解答题:共70
15、分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析 (2)【解析】(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接,由图1知,四边形为菱形,且,所以是正三角形,从而.同理可证,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,且四边形为正方形.设的中点为,以为原点,以,所在直线分别为,轴,建立空间直角坐标系,则,所以,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.【点睛】本
16、题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.18、(1)或(2)最小值为【解析】(1)讨论,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得所以所求不等式的解集为或(2)根据函数图像知:当时,所以因为,由,可知,所以,当且仅当,时,等号成立所以的最小值为【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.19、(1)证明见解析;(2).【解析】(1)通过证明面,即可由线面垂直推证面面垂直;(2)根据面
17、,将问题转化为求到面的距离,利用等体积法求点面距离即可.【详解】(1)因为棱柱是直三棱柱,所以又, 所以面 又,分别为AB,BC的中点所以/即面 又面,所以平面平面 (2)由(1)可知/所以/平面即点到平面的距离等于点到平面的距离设点到面的距离为由(1)可知,面 且在中,易知 由等体积公式可知即 由得 所以到平面的距离等于【点睛】本题考查由线面垂直推证面面垂直,涉及利用等体积法求点面距离,属综合中档题.20、(1);(2)【解析】(1)由正弦定理可得,化简并结合,可求得三者间的关系,代入余弦定理可求得;(2)由(1)可求得,再结合三角形的面积公式,可求出,从而可求出答案.【详解】(1)因为,所
18、以,整理得:. 因为,所以,所以.由余弦定理可得.(2)由(1)知,则,因为的面积是,所以,即,解得,则.故的周长为:.【点睛】本题考查了正弦定理、余弦定理在解三角形中的应用,考查了三角形面积公式的应用,属于基础题.21、(1),;(2)二次函数模型的回归方程来拟合效果会更好,理由见解析.【解析】(1)计算平均数,即可容易求得;结合参考数据,即可求得回归直线方程;(2)利用两个模型分别预测第11天的产量,和实际值进行比较,即可判断.【详解】(1), 由最小二乘法公式求得 即所求回归方程为. (2)由(1)可知,用线性回归方程模型求得该企业第11天的产量为(万个) 用题中的二次函数模型求得的结果为(万个)与第11天的实际数据进行比较发现 所以用这个二次函数模型的回归方程来拟合效果会更好.【点睛】本题考查平均数的求解,回归直线方程的求解,以及考查拟合模型的选择,属综合基础题.22、()()【解析】(1)由题意,f(x)的最大值为所以而m0,于是m=,f(x)=2sin(x+).由正弦函数的单调性可得x满足即所以f(x)在0,上的单调递减区间为(2)设ABC的外接圆半径为R,由题意,得化简得sin A+sin B=2sin Asin B.由正弦定理,得 由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0将式代入,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故