山东省青岛市胶州市2023年高三考前热身数学试卷含解析.doc

上传人:lil****205 文档编号:87994947 上传时间:2023-04-19 格式:DOC 页数:21 大小:2.68MB
返回 下载 相关 举报
山东省青岛市胶州市2023年高三考前热身数学试卷含解析.doc_第1页
第1页 / 共21页
山东省青岛市胶州市2023年高三考前热身数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《山东省青岛市胶州市2023年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市胶州市2023年高三考前热身数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义在上的偶函数,对,且,有成立,已知,则,的大小关系为( )ABCD2设,分别为双曲线(a0,b0)

2、的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD3函数的大致图象是ABCD4已知,则“mn”是“ml”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5若,则下列不等式不能成立的是( )ABCD6集合,则=( )ABCD7在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD8已知函数(),若函数在上有唯一零点,则的值为( )A1B或0C1或0D2或09正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD10在中,点为中点,过点的直线与,所在直

3、线分别交于点,若,则的最小值为( )AB2C3D11在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD12如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知下列命题:命题“x0R,”的否定是“xR,x213x”;已知p,q为两个命题,若“pq”为假命题,则“”为真命题;“a2”是“a5”的充分不必要条件;“若xy0,则x0且y0”的逆否命题为真命题其中所有真命题的序号是_14已知某几何体的三视图如图所示

4、,则该几何体外接球的表面积是_.15的展开式中的常数项为_16设为数列的前项和,若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.18(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.19(12分)在三棱锥中,是边长为的正三角形,平面平面,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.20(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数

5、在上单调递减,求的取值范围.21(12分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.22(10分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据偶函数的性质和单调性即可判断.【详解】解:对,且,有在上递增因为定义在上的偶函数所以在上递减又因为,所以故选:A【点睛】

6、考查偶函数的性质以及单调性的应用,基础题.2、C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.3、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题4、B【解析】构造长方体ABCDA1B1

7、C1D1,令平面为面ADD1A1,底面ABCD为,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断【详解】如图,取长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,直线=直线。若令AD1m,ABn,则mn,但m不垂直于若m,由平面平面可知,直线m垂直于平面,所以m垂直于平面内的任意一条直线mn是m的必要不充分条件故选:B【点睛】本题考点有两个:考查了充分必要条件的判断,在确定好大前提的条件下,从mnm?和mmn?两方面进行判断;是空间的垂直关系,一般利用长方体为载体进行分析5、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,

8、所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.6、C【解析】先化简集合A,B,结合并集计算方法,求解,即可【详解】解得集合,所以,故选C【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小7、D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二

9、面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.8、C【解析】求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:(),当时,由得,则在上单调递减,在上单调递增,所以是极小值,只需,即.令,则,函数在上单调递增.,;当时,函数在上单调递减,函数在上有且只有一个零点,的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零

10、点问题,零点存在性定理的应用,属于中档题.9、D【解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦

11、定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.10、B【解析】由,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,所以因为,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.11、D【解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,又,

12、所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.12、C【解析】利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】命题“xR,x

13、213x”的否定是“xR,x213x”,故错误;“pq”为假命题说明p假q假,则(p)(q)为真命题,故正确;a5a2,但a2/ a5,故“a2”是“a5”的必要不充分条件,故错误;因为“若xy0,则x0或y0”,所以原命题为假命题,故其逆否命题也为假命题,故错误14、【解析】先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.15、【解析】

14、写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【详解】的展开式通项公式为: ,令,所以,所以常数项为.故答案为:.【点睛】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.16、【解析】当时,由,解得,当时,两式相减可得,即,可得数列是等比数列再求通项公式.【详解】当时,即,当时,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【点睛】本题考查数列的前项和与通项公式的关系,还考查运算求解能力以及化归与转化思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)

15、(2)答案见解析(3)答案见解析【解析】(1)设曲线在点,处的切线的斜率为,可求得,利用直线的点斜式方程即可求得答案;(2)由()知,分时,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数【详解】(1),设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,故当时,所以在上单调递增;当时,;,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个

16、零点【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题18、(1)见解析;(2)见解析【解析】(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证【详解】(1),分别是,的中点平面,平面平面.(2)为正三角形,且D是的中点平面平面,且平面平面,平面平面平面且,平面,且平面.【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题19、(1)证明见解析;(2).【解析】(1)取 中点,连

17、接,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积【详解】解:(1)证明:取中点D,连接,.因为,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题20、(1)见解析;(2)【解析】(1)设,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,所以,设

18、,当时,单调递增,而,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,在单调递增,即,从而,因为函数在上单调递减,在上恒成立,令,在上单调递减,当时,则在上单调递减,符合题意.当时,在上单调递减,所以一定存在,当时,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.21、(1);(2).【解析】(1)求导得到,讨论和两种情况,计算函数的单调性,得到,再讨论

19、,三种情况,计算得到答案.(2)计算得到,讨论,两种情况,分别计算单调性得到函数最值,得到答案.【详解】(1),当时恒成立,所以单调递增,因为,所以有唯一零点,即符合题意;当时,令,函数在上单调递减,在上单调递增,函数。(i)当即,所以符合题意,(ii)当即 时,因为,故存在,所以 不符题意(iii)当 时,因为,设,所以,单调递增,即,故存在,使得,不符题意;综上,的取值范围为。(2)。当时,恒成立,所以 单调递增,所以,即符合题意;当 时,恒成立,所以单调递增,又因为,所以存在,使得,且当时,。即在上单调递减,所以,不符题意。综上,的取值范围为.【点睛】本题考查了函数的零点问题,恒成立问题

20、,意在考查学生的分类讨论能力和综合应用能力.22、(1);(2)见解析【解析】(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,可得,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,即可得证;法二:设,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,则,.直线的方程为,即.又点在线段上,.P是的中点,.由于,不重合,所以法二:设,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁