《山西省兴县圪垯中学2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山西省兴县圪垯中学2022-2023学年中考五模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP
2、的最小值为A1BCD2如图,已知点A(0,1),B(0,1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则BAC等于( )A90B120C60D303已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-24某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A0.286105 B2.86105 C28.6103 D2.861045甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行1
3、80km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=6若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD7在以下四个图案中,是轴对称图形的是()ABCD8已知一次函数y=kx+3和y=k1x+5,假设k0且k10,则这两个一次函数的图像的交点在( )A第一象限B第二象限C第三象限D第四象限9下列运算正确的是()A5abab=4Ba6a2=a4CD(a2b)3=a5b310如图是由三个相同的小正方体组成的几何体,则该几何体的左视
4、图是()ABCD11下列函数是二次函数的是( )ABCD12如图,经过测量,C地在A地北偏东46方向上,同时C地在B地北偏西63方向上,则C的度数为()A99B109C119D129二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,ABAC,A36, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 14如图,四边形ABCD中,ADCD,B2D120,C75则 15如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以O
5、B2的长为半径画弧交x轴正半轴于点A3;按此作法进行下去,则的长是_16分式有意义时,x的取值范围是_17如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(1,1),则两个正方形的位似中心的坐标是_18如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,AB=BC,CDAB于点D,CD=BDBE平分ABC,点H是
6、BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:ADCFDB;(2)求证:(3)判断ECG的形状,并证明你的结论.20(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)21(6分)给定关于x的二次函数ykx24
7、kx+3(k0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:与y轴的交点不变;对称轴不变;一定经过两个定点;请判断以上结论是否正确,并说明理由22(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3)(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由23(8分)如
8、图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)24(10分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF判断AF与O的位置关系并说明理由;若O的半径为4,AF=3,求AC的长25(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的
9、直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c226(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积
10、有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;27(12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】作点A关于
11、MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.2、C【解析】解:A(0,1),B(0,1),AB=1,OA=1,AC=1在RtAOC中,cosBAC=,BAC=60故选C点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧3、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x
12、的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征4、D【解析】用科学记数法表示较
13、大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】28600=2.861故选D【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键5、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键6、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函
14、数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.7、A【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:A【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、B【解析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.9、B【解析】由整数指数幂和分式的运算的
15、法则计算可得答案.【详解】A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: (m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方: (n是正整数)(4)同底数幂的除法:(a0,m、n都是正整数,且mn)(5)零次幂:(a0)(6) 负整数次幂: (a0, p是正整数).10、C【解析】分析:细心观察图中几何
16、体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项11、C【解析】根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解【详解】A. y=x是一次函数,故本选项错误;B. y=是反比例函数,故本选项错误;C.y=x-2+x2是二次函数,故本选项正确;D.y= 右边不是整式,不是二次函数,故本选项错误.故答案选C.【点睛】本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.12、B【解析】
17、方向角是从正北或正南方向到目标方向所形成的小于90的角,根据平行线的性质求得ACF与BCF的度数,ACF与BCF的和即为C的度数【详解】解:由题意作图如下DAC=46,CBE=63,由平行线的性质可得ACF=DAC=46,BCF=CBE=63,ACB=ACF+BCF=46+63=109,故选B【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:因为ABC中,ABAC,A36所以ABC=ACB=72因为BD平分ABC交AC于点D所以ABD=CBD=36=A因为DE平分BDC交BC于点E
18、所以CDE=BDE=36=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36,每个底角为72.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,14、【解析】连接AC,过点C作CEAB的延长线于点E,,如图,先在RtBEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断AEC为等腰直角三角形,所以BAC=45,AC=,利用即可求解【详解】连接AC,过点C作CEAB的延长线于点E,ABC=2D=120, D=60, ADCD, ADC是等边三角形,D+DAB+ABC+DCB=360, ACB=DCB-DC
19、A=75-60=15, BAC=180-ABC-ACB=180-120-15=45, AE=CE,EBC=45+15=60, BCE=90-60=30,设BE=x,则BC=2x,CE=,在RTAEC中,AC=,故答案为.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形合理作辅助线是解题的关键15、【解析】【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知
20、B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是,故答案为:【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.16、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数,分式有意
21、义,分母不为217、(1,0);(5,2).【解析】本题主要考查位似变换中对应点的坐标的变化规律因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点【详解】正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,设AG所在直线的解析式为y=kx+b(k0),解得此函数的解析式为y=x-1,与EC的交点坐标是(1,0);(2)当A和E是对应顶点,C和G是对应顶点时,
22、位似中心就是AE与CG的交点,设AE所在直线的解析式为y=kx+b(k0),解得,故此一次函数的解析式为,同理,设CG所在直线的解析式为y=kx+b(k0),解得,故此直线的解析式为联立得解得,故AE与CG的交点坐标是(-5,-2)故答案为:(1,0)、(-5,-2)18、【解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,AD=2CDC=90,DAC=30ODH=30DOH=60DOK=120扇形ODK的面积为ODH=OKH=30,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:三、解答题:(本大
23、题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)首先根据AB=BC,BE平分ABC,得到BEAC,CE=AE,进一步得到ACD=DBF,结合CD=BD,即可证明出ADCFDB;(2)由ADCFDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由DBF=GBC=GCB=ECF,得ECO=45,结合BEAC,即可判断出ECG的形状.【详解】解:(1)AB=BC,BE平分ABCBEACCDABACD=ABE(同角的余角相等)又CD=BDADCFDB(2)
24、AB=BC,BE平分ABCAE=CE则CE=AC由(1)知:ADCFDBAC=BFCE=BF(3)ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则EGC=2CBG=ABC=45,又BEAC,故ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大20、 【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(
25、A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比21、(1)(2)1(3)【解析】(1)由抛物线与x轴只有一个交点,可知=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断【详解】(1)二次函数ykx24kx+3与x轴只有一个公共点,关于x的方程kx24kx+30有两个相等的实数根,(4k)243k16k212k0,解得
26、:k10,k2,k0,k;(2)AB2,抛物线对称轴为x2,A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k1,(3)当x0时,y3,二次函数图象与y轴的交点为(0,3),正确;抛物线的对称轴为x2,抛物线的对称轴不变,正确;二次函数ykx24kx+3k(x24x)+3,将其看成y关于k的一次函数,令k的系数为0,即x24x0,解得:x10,x24,抛物线一定经过两个定点(0,3)和(4,3),正确综上可知:正确的结论有【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题22、 (1) y=x2+2x+3;(2)
27、见解析.【解析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),得,该抛物线的解析式为y=x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:抛物线y=x2+2x+3=(x1)2+4,点B(3,0),点C(0,3),抛物线的对称轴为直线x=1,点
28、A的坐标为(1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3t)2=t26t+10,当AC为斜边时,10=4+t2+t26t+10,解得,t1=1或t2=2,点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t26t+10,解得,t=,点Q的坐标为(1,),当CQ时斜边时,t26t+10=4+t2+10,解得,t=,点Q的坐标为(1,),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,)时,使得以A、C、Q为顶点的三角形为直角三角形【点睛】本题考查了待定系数法求函数解析式,二次函数
29、的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.23、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(
30、0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD=【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题24、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E
31、为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90,证出OAF=90,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90,OFBC,AEO=90,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OA
32、F=OCF,PC是O的切线,OCF=90,OAF=90,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,34=1AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质25、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SAC
33、B+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键26、(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(312x)米依题意可列方程x(312x)72,即x215x361 解得x13(舍去),x22 (2)依题意,得8312x3解得6x4面积Sx(312x)2(x
34、)2(6x4)当x时,S有最大值,S最大; 当x4时,S有最小值,S最小4(3122)88 “点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.27、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100m)6000,解得:m1,m是整数,m最大可取1答:这所中学最多可以购买篮球1个【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般