《广东省深圳市龙岗区龙岗区横岗六约校2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省深圳市龙岗区龙岗区横岗六约校2023届初中数学毕业考试模拟冲刺卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a2一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )ABCD3若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )ABCD4如图,在平面直角坐标系中,ABC与A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A(4,3)B(3,4)C(3,3)D(4,4)5若点A(a,b)
3、,B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD6在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份7如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为()ABCD8如图,A、B、C是O上的三点,B=75,则AOC的度数是( )A15
4、0B140C130D1209如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)10关于x的不等式的解集为x3,那么a的取值范围为()Aa3Ba3Ca3Da311根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8107B880108C8.8109D8.8101012下列图形中,既是中心对称图形又是轴对称图形
5、的是 ( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_.14如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,APO30先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30得到线段PC,连接BC若点A的坐标为(1,0),则线段BC的长为_15下列对于随机事件的概率的描述:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是0.2;测
6、试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有_(只填写序号)16某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_17如图,在中,AB为直径,点C在上,的平分线交于D,则_18写出一个经过点(1,2)的函数表达式_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)
7、如图,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,连接AF,求OFA的度数20(6分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?21(6分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90,点E在A
8、B上,求证:CDACEB22(8分)如图,一次函数y1=x1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(2,m)(1)求反比例函数的解析式;(2)求点B到直线OM的距离23(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)24(10分)一件上衣,每件原价500元,第
9、一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少25(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?26(12分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC
10、=4,求菱形OCED的面积27(12分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD求证;BDCA若C45,O的半径为1,直接写出AC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A2、A【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是故选:A【点睛】本题考查概
11、率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比3、D【解析】一次函数y=ax+b的图象经过第一、二、四象限,a0,a+b不一定大于0,故A错误,ab0,故B错误,ab0,故C错误,0,故D正确故选D.4、A【解析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标【详解】如图,点P的坐标为(-4,-3)故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心5、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选
12、D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.6、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B7、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得E1OD1=60,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得OD2=E1D1=2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,依此规律可得正六边
13、形A11B11C11D11E11F11的边长=()102,然后化简即可详解:连接OE1,OD1,OD2,如图,六边形A1B1C1D1E1F1为正六边形,E1OD1=60,E1OD1为等边三角形,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,OD2E1D1,OD2=E1D1=2,正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,则正六边形A11B11C11D11E11F11的边长=()102=故选A点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这
14、个圆的内接正多边形,这个圆叫做这个正多边形的外接圆记住正六边形的边长等于它的半径8、A【解析】直接根据圆周角定理即可得出结论【详解】A、B、C是O上的三点,B=75,AOC=2B=150故选A9、B【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C10、D【解析】分析:先解第一个不等式得到x3,由于不等式组的解集为x3,则利用同大取大可得到a的范围详解:解不等式2(x-1)4,得:x3,解不等式a-x0,得:xa,不等式组的解集为x3,a3,故选D点睛:本题考查了解一元一次不等
15、式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到11、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.81010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的
16、值以及n的值12、C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、16或1【解析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1故答案为:16
17、或1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键14、2【解析】只要证明PBC是等腰直角三角形即可解决问题.【详解】解:APOBPO30,APB60,PAPCPB,APC30,BPC90,PBC是等腰直角三角形,OA1,APO30,PA2OA2,BCPC2,故答案为2【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明PBC是等腰直角三角形15、【解析】大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1
18、之间.根据事件的类型及概率的意义找到正确选项即可.【详解】解:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是,此结论正确;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:【点睛】本题考查了概率的意义,解题的关键在于掌握计算公式.16、乙【解析】据方差的意义可作出判断方差是用来衡
19、量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分
20、,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度18、y=x+1(答案不唯一)【解析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式答案不唯一【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、25【解析】先利用正方形的性质得
21、OA=OC,AOC=90,再根据旋转的性质得OC=OF,COF=40,则OA=OF,根据等腰三角形的性质得OAF=OFA,然后根据三角形的内角和定理计算OFA的度数【详解】解:四边形OABC为正方形,OA=OC,AOC=90,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,OC=OF,COF=40,OA=OF,OAF=OFA,AOF=AOC+COF=90+40=130,OFA=(180-130)=25故答案为25【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质20、(1)甲种树苗每棵的价格是30
22、元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗【解析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有 ,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买
23、y棵乙种树苗,依题意有30(110%)(50y)+40y1500,解得y11,y为整数,y最大为11,答:他们最多可购买11棵乙种树苗【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.21、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形22、(1)(2)【
24、解析】(1)根据一次函数解析式求出M点的坐标,再把M点的坐标代入反比例函数解析式即可;(2)设点B到直线OM的距离为h,过M点作MCy轴,垂足为C,根据一次函数解析式表示出B点坐标,利用OMB的面积=BOMC算出面积,利用勾股定理算出MO的长,再次利用三角形的面积公式可得OMh,根据前面算的三角形面积可算出h的值【详解】解:(1)一次函数y1=x1过M(2,m),m=1M(2,1)把M(2,1)代入得:k=2反比列函数为(2)设点B到直线OM的距离为h,过M点作MCy轴,垂足为C一次函数y1=x1与y轴交于点B,点B的坐标是(0,1)在RtOMC中,点B到直线OM的距离为23、(1)一个水瓶4
25、0元,一个水杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场所需费用为540+(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n
26、0,160+0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.24、40%【解析】先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1x)(12x)240,解得x10.220%,x21.3130%则第一次降价的百分率为20%,第二次降价的百
27、分率为40%【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可25、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率26、(1)证明见解析;(1)【解析】(1)由平行
28、四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半27、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.