《广东省宝塔实验重点达标名校2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省宝塔实验重点达标名校2022-2023学年中考数学最后一模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列分式是最简分式的是( )ABCD2如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()ABC2D23如图,AD,CE分别是ABC的中线和角平分线
2、若AB=AC,CAD=20,则ACE的度数是()A20B35C40D704计算()1的结果是()ABC2D25如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米62018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )A42,41B41,42C41,41D42,4574的绝对值是( )A4BC4D8一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()ABCD9将一副三角板
3、和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D4510小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种A1B2C3D411对于数据:6,3,4,7,6,0,1下列判断中正确的是( )A这组数据的平均数是6,中位数是6B这组数据的平均数是6,中位数是7C这组数据的平均数是5,中位数是6D这组数据的平均数是5,中位数是712方程(m2)x2+3mx+1=0是关于x的一元二次方程,则(
4、)Am2Bm=2Cm=2Dm2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 14地球上的海洋面积约为361000000km1,则科学记数法可表示为_km115百子回归图是由 1,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归16关于x的一元二次
5、方程x2+4xk=0有实数根,则k的取值范围是_17如图, AB是O的弦,OAB=30OCOA,交AB于点C,若OC=6,则AB的长等于_18如图,以长为18的线段AB为直径的O交ABC的边BC于点D,点E在AC上,直线DE与O相切于点D已知CDE=20,则的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) 阅读我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”理解如图1,RtABC是“中边三角形”,C=90,AC和BD是“对应边”,求tanA的值;探究如图2,已知菱形A
6、BCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P经过的路程为s当=45时,若APQ是“中边三角形”,试求的值20(6分)解不等式组:,并把解集在数轴上表示出来.21(6分)如图,在平面直角坐标系中有RtABC,A=90,AB=AC,A(2,0),B(0,1)(1)求点C的坐标;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此时的直线BC的解析式(3)若把上一问中的反比例函数记为y1,点B,C所在的直线记为y2,请直接写出在第一象限内当y1y2时x的取值范围22
7、(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表七年级英语口语测试成绩统计表成绩分等级人数A12BmCnD9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中C级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到B级以上包括B级的学生人数23(8分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)抛物线经过A、C两点,与AB边交于点D(1)求抛物线的函数表达式;(2)点P为线段BC
8、上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S求S关于m的函数表达式,并求出m为何值时,S取得最大值;当S最大时,在抛物线的对称轴l上若存在点F,使FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由24(10分)有这样一个问题:探究函数y2x的图象与性质小东根据学习函数的经验,对函数y2x的图象与性质进行了探究下面是小东的探究过程,请补充完整:(1)函数y2x的自变量x的取值范围是_;(2)如表是y与x的几组对应值x43.532101233.54y 0m则m的值为_;(3)如图,在平面直角坐标系中,描出了以上表中
9、各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质_25(10分)如图,在RtABC中,C=90,AC=AB求证:B=30请填空完成下列证明证明:如图,作RtABC的斜边上的中线CD,则 CD=AB=AD ( )AC=AB,AC=CD=AD 即ACD是等边三角形A= B=90A=3026(12分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO27(12分)ABC内接于O,AC为O的直径,A60,点D在AC上,连接BD作等边三角形BDE,连接OE如图1,求证:OEAD;如图2,连接
10、CE,求证:OCEABD;如图3,在(2)的条件下,延长EO交O于点G,在OG上取点F,使OF2OE,延长BD到点M使BDDM,连接MF,若tanBMF,OD3,求线段CE的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:A,故本选项错误;B,故本选项错误;C,不能约分,故本选项正确;D,故本选项错误故选C点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键2、D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积
11、相加,再减去两个等边三角形的面积,分别求出即可【详解】过A作ADBC于D,ABC是等边三角形,AB=AC=BC=2,BAC=ABC=ACB=60,ADBC,BD=CD=1,AD=BD=,ABC的面积为BCAD=,S扇形BAC=,莱洛三角形的面积S=32=22,故选D【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键3、B【解析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40,B=ACB=(180-CAB)=70再利用角平分线定义即可得出ACE=ACB=35【详解】AD是ABC的中
12、线,AB=AC,CAD=20,CAB=2CAD=40,B=ACB=(180-CAB)=70CE是ABC的角平分线,ACE=ACB=35故选B【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出ACB=70是解题的关键4、D【解析】根据负整数指数幂与正整数指数幂互为倒数,可得答案【详解】解: ,故选D【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数5、A【解析】利用锐角三角函数关系即可求出小刚上升了的高度【详解】在RtAOB中,AOB=90,AB=300米,BO=ABsin=30
13、0sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键6、C【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个【详解】从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数所以本题这组数据的中位数是 1,众数是 1 故选C【点睛】考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排
14、好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数7、A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.8、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:故选:D【点睛】此题考查
15、了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比9、A【解析】试题分析:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选A考点:平行线的性质10、C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27x=(27-5y)x,y是非负整数,或或,付款的方式共有3种故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解11、C【解析】根据题目中的数据可以按照
16、从小到大的顺序排列,从而可以求得这组数据的平均数和中位数【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是: 中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.12、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D二、填空题:(本大题共6个小题,每小题4分,共24分)1
17、3、1【解析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长14、3.612【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将361 000 000用科学记数法表示为3.612故答案为3.61215、505【解析
18、】根据已知得:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案16、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程
19、x2+1x-k=0有实数根,=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键17、18【解析】连接OB,OA=OB,B=A=30,COA=90,AC=2OC=26=12,ACO=60,ACO=B+BOC,BOC=ACO-B=30,BOC=B,CB=OC=6,AB=AC+BC=18,故答案为18.18、7【解析】连接OD,由切线的性质和已知条件可求出AOD的度数,再根据弧长公式即可求出的长【详解】连接OD,直线DE与O相切于点D,EDO=90,CDE=20,ODB=180-90-20=70,OD=OB,ODB=OB
20、D=70,AOD=140,的长=7,故答案为:7【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出AOD的度数是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、tanA=;综上所述,当=45时,若APQ是“中边三角形”,的值为或【解析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得BC=x,可得tanA=(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得AEFCEP,=,分两种情况:当底边PQ与它的中线AE相等,即
21、AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QNAP于N,可得tanAPQ=,tanAPE=,=,【详解】解:理解AC和BD是“对应边”,AC=BD,设AC=2x,则CD=x,BD=2x,C=90,BC=x,tanA=;探究若=45,当点P在AB上时,APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,PC=QC,ACB=ACD,AC是QP的垂直平分线,AP=AQ,CAB=ACP,AEF=CEP,AEFCEP,=,PE=CE,=,分两种情况:当底边PQ与它的中线AE相等,即A
22、E=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QNAP于N,MN=AN=PM=QM,QN=MN,ntanAPQ=,taAPE=,=,综上所述,当=45时,若APQ是“中边三角形”,的值为或【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.20、x【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由得,x2;由得,
23、x,故此不等式组的解集为:x在数轴上表示为:点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键21、(1)C(3,2);(2)y1=, y2=x+3; (3)3x1 【解析】分析:(1)过点C作CNx轴于点N,由已知条件证RtCANRtAOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设ABC向右平移了c个单位,则结合(1)可得点C,B的坐标分别为(3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C,B的坐标代入所设解析式
24、即可求得c的值,由此即可得到点C,B的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C,B的坐标和图象即可得到本题所求答案.详解:(1)作CNx轴于点N,CAN=CAB=AOB=90,CAN+CAN=90,CAN+OAB=90,CAN=OAB,A(2,0)B(0,1),OB=1,AO=2,在RtCAN和RtAOB, ,RtCANRtAOB(AAS),AN=BO=1,CN=AO=2,NO=NA+AO=3,又点C在第二象限,C(3,2);(2)设ABC沿x轴的正方向平移c个单位,则C(3+c,2),则B(c,1),设这个反比例函数的解析式为:y1=,又点C和B在该比例函
25、数图象上,把点C和B的坐标分别代入y1=,得1+2c=c,解得c=1,即反比例函数解析式为y1=, 此时C(3,2),B(1,1),设直线BC的解析式y2=mx+n, , ,直线CB的解析式为y2=x+3; (3)由图象可知反比例函数y1和此时的直线BC的交点为C(3,2),B(1,1),若y1y2时,则3x1 点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形RtCAN和RtAOB;(2)利用平移的性质结合点B、C的坐标表达出点C和B的坐标,由点C和B都在反比例函数的图象上列出方程,解方程
26、可得点C和B的坐标,从而使问题得到解决.22、 (1)60人;(2)144;(3)288人.【解析】等级人数除以其所占百分比即可得;先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;总人数乘以A、B等级百分比之和即可得【详解】解:本次被抽取参加英语口语测试的学生共有人;级所占百分比为,级对应的百分比为,则扇形统计图中C级的圆心角度数为;人,答:估计英语口语达到B级以上包括B级的学生人数为288人【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体23、
27、(1);(2),当m=5时,S取最大值;满足条件的点F共有四个,坐标分别为,【解析】(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;(2)先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;直接写出满足条件的F点的坐标即可,注意不要漏写【详解】解:(1)将A、C两点坐标代入抛物线,得 ,解得: ,抛物线的解析式为y=x2+x+8;(2)OA=8,OC=6,AC= =10,过点Q作QEBC与E点,则sinACB = = =, =,QE=(10m),S=CPQE=m(10m)=m2+3m;S=CPQE=m(10m)=m2+3m=(m5)2+,当m=5时,S取最
28、大值;在抛物线对称轴l上存在点F,使FDQ为直角三角形,抛物线的解析式为y=x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当FDQ=90时,F1(,8),当FQD=90时,则F2(,4),当DFQ=90时,设F(,n),则FD2+FQ2=DQ2,即+(8n)2+(n4)2=16,解得:n=6 ,F3(,6+),F4(,6),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6)【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们
29、要加强训练,属于中档题24、(1)任意实数;(2);(3)见解析;(4)当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【解析】(1)没有限定要求,所以x为任意实数,(2)把x3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x3代入y2x得,y;故答案为;(3)如图所示;(4)根据图象得,当x2时,y随x的增大而增大;当x2时,y随x的增大而增大故答案为当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【点睛】本题考查了函数的图像和性质,属于简单题,
30、熟悉函数的图像和概念是解题关键.25、直角三角形斜边上的中线等于斜边的一半;1【解析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可【详解】证明:如图,作RtABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),AC=AB,AC=CD=AD 即ACD是等边三角形,A=1,B=90A=30【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练26、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,
31、根据ADDC即可得证;(2)连接BC,证DACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质27、 (1)证明见解析;(2)证明见解析;(3)CE【解析】(1)连接OB,证明ABDOBE,即可证出OEAD(2)连接O
32、B,证明OCEOBE,则OCEOBE,由(1)的全等可知ABDOBE,则OCEABD(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则ADBMQD,四边形MQOG为平行四边形,DMFEDN,再结合特殊角度和已知的线段长度求出CE的长度即可【详解】解:(1)如图1所示,连接OB,A60,OAOB,AOB为等边三角形,OAOBAB,AABOAOB60,DBE为等边三角形,DBDEBE,DBEBDEDEB60,ABDOBE,ADBOBE(SAS),OEAD;(2)如图2所示,由(1)可知ADBOBE,BOEA60,ABDOBE,BOA60,EOCBOE =60,又OB=OC,OE
33、=OE,BOECOE(SAS),OCEOBE,OCEABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,BDDM,ADBQDM,QMDABD,ADBMQD(ASA),ABMQ,A60,ABC90,ACB30,ABAOCOOG,MQOG,ABGO,MQGO,四边形MQOG为平行四边形,设AD为x,则OEx,OF2x,OD3,OAOG3+x,GF3x,DQADx,OQMG3x,MGGF,DOG60,MGF120,GMFGFM30,QMDABDODE,ODN30,DMFEDN,OD3,ON,DN,tanBMF,tanNDE, ,解得x1,NE,DE,CE故答案为(1)证明见解析;(2)证明见解析;(3)CE【点睛】本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与BMF相等的角为解题的关键