广东省佛山禅城区七校联考2023年中考联考数学试卷含解析.doc

上传人:lil****205 文档编号:87994606 上传时间:2023-04-19 格式:DOC 页数:17 大小:930.50KB
返回 下载 相关 举报
广东省佛山禅城区七校联考2023年中考联考数学试卷含解析.doc_第1页
第1页 / 共17页
广东省佛山禅城区七校联考2023年中考联考数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《广东省佛山禅城区七校联考2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省佛山禅城区七校联考2023年中考联考数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在0,2,3,四个数中,最小的数是()A

2、0B2C3D2如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )ABCD3若一次函数y(2m3)x1+m的图象不经过第三象限,则m的取值范图是()A1mB1mC1mD1m4下列图形中是轴对称图形但不是中心对称图形的是()ABCD5某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环)下列说法中正确的是()A若这5次成绩的中位数为8,则x8B若这5次成绩的众数是8,则x8C若这5次成绩的方差为8,则x8D若这5次成绩的平均成绩是8,则x86如图,在RtABC中,BAC90,ABAC,ADBC,

3、垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62,那么DBF的度数为()A62B38C28D267如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米A25BCD8根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD9如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOB

4、C=1,tanBOC=,则k2的值是()A3BC3D610下列各点中,在二次函数的图象上的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,CB=CA,ACB=90,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=FQAC,其中正确的结论的个数是_12关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_13已知关于x的一元二次方程(k5)x22x+2=0有实根,则k的取值范围为_14如图,为了解全校3

5、00名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm175cm之间的人数约有_人15计算a3a2a的结果等于_16我国经典数学著作九章算术中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,

6、根据题意列方程为 17如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为_米三、解答题(共7小题,满分69分)18(10分)某数学兴趣小组为测量如图(所示的一段古城墙的高度,设计用平面镜测量的示意图如图所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处 已知ABBD、CDBD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案 要求:面出示意图(不要求写画法);写出方案,给出简要的计算过程:给出的方案不能用到图的方法

7、19(5分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为()请直接写出袋子中白球的个数()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)20(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?21(10分)如图,有长为14m的篱笆,现一面利用墙

8、(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?22(10分)先化简,再求值:(),其中a=+123(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议

9、:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值24(14分)已知:如图,在平面直角坐标系中,O为坐标原点,OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BCAB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD(1)求证:ABCAOD(2)设ACD的面积为,求关于的函数关系式(3)若四边形ABCD恰有一组对边平行,求的值 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据实数比较大小的法则进行比较即可【详解】在这四个数中3

10、0,0,-20,-2最小故选B【点睛】本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小2、C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形3、B【解析】根据一次函数的性质,根据不等式组即可解决问题;【详解】一次函数y=(2m-3)x-1+m的图象不经过第三象限,解得1m故选:B【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考

11、问题,属于中考常考题型4、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、D【解析】根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D【详解】A、若这5次成绩的中位数

12、为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 3(8-8)2+(9-8)2+(7-8)2=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;故选D【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立6、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFA

13、DE详解:AB=AC,ADBC,BD=CD 又BAC=90,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=9062=28 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键7、B【解析】解:过点B作BEAD于E设BE=xBCD=60,tanBCE,在直角ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故选B.8、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)

14、p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限9、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型10、D【解析】将各选项的点逐一代入即可判断【详

15、解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式二、填空题(共7小题,每小题3分,满分21分)11、【解析】由正方形的性质得出FAD90,ADAFEF,证出CADAFG,由AAS证明FGAACD,得出ACFG,正确;证明四边形CBFG是矩形,得出SFABFBFGS四边形CBFG,正确;由等腰直角三角形的性质和矩形的性质得出ABCABF45,正确;证出ACDFEQ,得出对应边成比例,得出正确【详解】解:四

16、边形ADEF为正方形,FAD90,ADAFEF,CADFAG90,FGCA,GAFAFG90,CADAFG,在FGA和ACD中,FGAACD(AAS),ACFG,正确;BCAC,FGBC,ACB90,FGCA,FGBC,四边形CBFG是矩形,CBF90,SFABFBFGS四边形CBFG,正确;CACB,CCBF90,ABCABF45,正确;FQEDQBADC,EC90,ACDFEQ,AC:ADFE:FQ,ADFEAD2FQAC,正确;故答案为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全

17、等和三角形相似是解决问题的关键12、2.【解析】试题分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.13、【解析】若一元二次方程有实根,则根的判别式=b2-4ac0,且k-10,建立关于k的不等式组,求出k的取值范围【详解】解:方程有两个实数根,=b2-4ac=(-2)2-42(k-1)=44-8k0,且k-10,解得:k且k1,故答案为k且k1【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根14、1【解析】用总

18、人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例【详解】估计该校男生的身高在170cm-175cm之间的人数约为300=1(人),故答案为1【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题15、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则16、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.

19、故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用17、(14+2)米【解析】过D作DEBC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可【详解】如图,过D作DEBC的延长线于E,连接AD并延长交BC的延长线于FCD=8,CD与地面成30角,DE=CD=8=4,根据勾股定理得:CE=41m杆的影长为2m,=,EF=2DE=24=8,BF=BC+CE+EF=20+4+8=(28+4)=,AB=

20、(28+4)=14+2故答案为(14+2)【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键三、解答题(共7小题,满分69分)18、(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得 APB=CPD ,由 ABBD、CDBD 可得到 ABP=CDP=90,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得APB=CPD,ABP=CDP=90,RtABPRtCDP, ,CD=8. 答:该古城墙的高度为8m(2)

21、解:答案不唯一,如:如图, 在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在RtACD中,ACD=90,tan=,AC= tan,AB=AC+BC=tan+h【点睛】本题考查相似三角形性质的应用解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题19、(1)袋子中白球有2个;(2)【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案试

22、题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:考点:列表法与树状图法;概率公式20、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元

23、【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量21、(1)S=3x1+14x,x 8;(1) 5m;(3)46.67m1【解析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得Sx(143x),即所求的函数解析式为:S3x1+14x,又0143x10,;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),

24、3x1+14x2整理,得x18x+150,解得x3或5,当x3时,长1491510不成立,当x5时,长1415910成立,AB长为5m;(3)S14x3x13(x4)1+48墙的最大可用长度为10m,0143x10,对称轴x4,开口向下,当xm,有最大面积的花圃【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.22、,.【解析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题【详解】解: ()=,当a=+1时,原式=【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法23、(1)16

25、00千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可试题解析:(1)设原时速为xkm/h,通车后里程为ykm,则有: ,解得: 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1m%)(8+m%)=1600,解得:m1=1,m2=0(不合题意舍去),答:m的值

26、为124、(1)证明详见解析;(2)S=(m+1)2+(m);(2)2或1【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明ABCAOD;(2)过点B作直线BE直线y=m于E,作AFBE于F,如图,证明RtABFRtBCE,利用相似比可得BC=(m+1),再在RtACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明AOBACD,利用相似的性质得,而SAOB=,于是可得S=(m+1)2+(m);(2)作BHy轴于H,如图,分类讨论:当ABCD时,则ACD=CAB,由AOBACD得ACD=AOB,所以CAB=AOB,利用三角函数得到

27、tanAOB=2,tanACB=,所以=2;当ADBC,则5=ACB,由AOBACD得到4=5,则ACB=4,根据三角函数定义得到tan4=,tanACB=,则=,然后分别解关于m的方程即可得到m的值试题解析:(1)证明:A(0,5),B(2,1),AB=5,AB=OA,ABBC,ABC=90,在RtABC和RtAOD中,RtABCRtAOD;(2)解:过点B作直线BE直线y=m于E,作AFBE于F,如图,1+2=90,1+2=90,2=2,RtABFRtBCE,即,BC=(m+1),在RtACB中,AC2=AB2+BC2=25+(m+1)2,ABCAOD,BAC=OAD,即4+OAC=OAC+5,4=5,而AO=AB,AD=AC,AOBACD,=,而SAOB=52=,S=(m+1)2+(m);(2)作BHy轴于H,如图,当ABCD时,则ACD=CAB,而AOBACD,ACD=AOB,CAB=AOB,而tanAOB=2,tanACB=,=2,解得m=1;当ADBC,则5=ACB,而AOBACD,4=5,ACB=4,而tan4=,tanACB=,=,解得m=2综上所述,m的值为2或1考点:相似形综合题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁