广东省东莞市东华中学2022-2023学年中考四模数学试题含解析.doc

上传人:lil****205 文档编号:87994497 上传时间:2023-04-19 格式:DOC 页数:18 大小:723.50KB
返回 下载 相关 举报
广东省东莞市东华中学2022-2023学年中考四模数学试题含解析.doc_第1页
第1页 / 共18页
广东省东莞市东华中学2022-2023学年中考四模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《广东省东莞市东华中学2022-2023学年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省东莞市东华中学2022-2023学年中考四模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110B120C125D1352下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD3

2、a的倒数是3,则a的值是()ABC3D34如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或5已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D36|3|的值是( )A3BC3D7不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥8图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A

3、2mnB(m+n)2C(m-n)2Dm2-n29小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且ab.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案32.52.55则最省钱的方案为( )A方案1B方案2C方案3D三个方案费用相同10如图,AB是O的切线,半径OA=2,OB交O于C,B=30,则劣弧的长是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处

4、,连接CF,则CF的长度为_12孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为_13不等式组的解集为,则的取值范围为_14不等式组的最大整数解为_15要使分式有意义,则x的取值范围为_16因式分解:3a33a=_三、解答题(共8题,共72分)17(8分)如图所示,抛物线yx2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DCDE,求出点D的坐标;在第

5、二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标18(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率19(8分

6、)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求直线AB和反比例函数的解析式;(1)求OCD的面积20(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且mn,结合图象求x

7、0的取值范围21(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x0,0mn)的图象上,对角线BDy轴,且BDAC于点P已知点B的横坐标为1(1)当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由22(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根

8、据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图中的条形图补充完整;学习时间在22.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?23(12分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹已知:如图,线段a,h求作:ABC,使AB=AC,且BAC=,高AD=h24某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍具体情况如下表:甲种乙种丙种进价(元/台)120016002000售价(元/台)142018602280经预算,商场最多支出132000元用于购买这批

9、电冰箱(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180,CDE+DEG=180,ABE+BED+CDE=360又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(36090)=135,BFD=360FBEFDEBED=36013590=135故选D【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时

10、注意:两直线平行,同旁内角互补解决问题的关键是作平行线2、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、A【解析】根据倒数的定义进行解答即可【详解】a的倒数是3,3a=1,解得:a=故选A【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数4、B【解析】根据图

11、象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.5、B【解析】把代入方程组得:,解得:,所以a2b=2()=2.故选B.6、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.7、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形

12、的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状8、C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1又原矩形的面积为4mn,中间空的部分的面积=(m+n)1-4mn=(m-n)1故选C9、A【解析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为.ab,方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.10、C【解析】由切线的性质定理得出OAB=90,进而求出AOB=60,再利用弧长公式求出即可【详解】AB是O的切线,OA

13、B=90,半径OA=2,OB交O于C,B=30,AOB=60,劣弧AC的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,B

14、FAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质12、【解析】分析:根据题意可以列出相应的方程组,从而可以解答本题详解:由题意可得,故答案为点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组13、k1【解析】解不等式2x+96x+1可得x2,解不等式x-k1,可得xk+1,由于x2,可知k

15、+12,解得k1.故答案为k1.14、1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解【详解】,解不等式得:x1,解不等式得x-11x,x-1x1,-x1,x-1,不等式组的解集为x-1,不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.15、x1【解析】由题意得x-10,x1.故答案为x1.16、3a(a+1)(a1)【解析】首先提取公因式3a,进而利用平方差公式分解因式得出答案【详解】解:原式=3a(a21)=3a(a

16、+1)(a1)故答案为3a(a+1)(a1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键三、解答题(共8题,共72分)17、(1)y=x22x3;(2)D(0,1);(3)P点坐标(,0)、(,2)、(3,8)、(3,10)【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EFy轴于点F,利用勾股定理表示出DC,DE的长再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明CODDFE,得出CDE=90,即CDDE,然后当以C、D、P为顶点的三角形

17、与DOC相似时,根据对应边不同进行分类讨论:当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PGy轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PGy轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)抛物线y=x2+bx+c经过A(1,0)、B(0,3),解得,故抛物线的函数解析式为y=

18、x22x3;(2)令x22x3=0,解得x1=1,x2=3,则点C的坐标为(3,0),y=x22x3=(x1)24,点E坐标为(1,4),设点D的坐标为(0,m),作EFy轴于点F(如下图),DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,DC=DE,m2+9=m2+8m+16+1,解得m=1,点D的坐标为(0,1);(3)点C(3,0),D(0,1),E(1,4),CO=DF=3,DO=EF=1,根据勾股定理,CD=,在COD和DFE中,CODDFE(SAS),EDF=DCO,又DCO+CDO=90,EDF+CDO=90,CDE=18090=90,CDDE,当

19、OC与CD是对应边时,DOCPDC,即=,解得DP=,过点P作PGy轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DGDO=11=0,所以点P(,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,2);当OC与DP是对应边时,DOCCDP,即=,解得DP=3,过点P作PGy轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DGOD=91=8,所以,点P的坐标是(3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,

20、满足条件的点P共有4个,其坐标分别为(,0)、(,2)、(3,8)、(3,10)考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.18、(1)(2)【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率【详解】解:(1)确定小亮打第一场,再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小

21、莹与小芳打第一场的概率为【点睛】本题主要考查了列表法与树状图法;概率公式19、(1),;(1)2【解析】试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解试题解析:(1)OB=4,OE=1,BE=1+4=3CEx轴于点E,tanABO=,OA=1,CE=3,点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,m=3该反比例函数的解析式为;(

22、1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,1),则BOD的面积=411=1,BOD的面积=431=3,故OCD的面积为1+3=2考点:反比例函数与一次函数的交点问题20、 (1)y=x2-2x-3;(2)k=b;(3)x02或x01【解析】(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q,根据mn结合图像即可得到x0的取值范围.【详解】(1)把M(2,-3)代入y=x2+

23、ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,因此,二次函数的表达式为:y=x2-2x-3;(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0)当y=kx+b(k0)经过(3,0)时,3k+b=0;当y=kx+b(k0)经过(-1,0)时,k=b(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),若点P(x0,m)使得mn,结合图象可以得出x02或x01【点睛】本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.21、(1)直线AB的解析式为y=x+3;理由见解

24、析;四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.【解析】分析:(1)先确定出点A,B坐标,再利用待定系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),进而得出A(1-t,+t),即:(1-t)(+t)=m,即可得出点D(1,8-),即可得出结论详解:(1)如图1,m=1,反比例函数为y=,当x=1时,y=1,B(1,1),当y=2时,2=,x=2,A(2,2),设直线AB的解析式为y=kx+b,直线AB的解析式为y=-x+3;四边形ABCD是菱形,理由如下:如图2,由知,B(1,1),BDy轴,D(1,5

25、),点P是线段BD的中点,P(1,3),当y=3时,由y=得,x=,由y=得,x=,PA=1-=,PC=-1=,PA=PC,PB=PD,四边形ABCD为平行四边形,BDAC,四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,PA=PB=PC=PD,(设为t,t0),当x=1时,y=,B(1,),A(1-t,+t),(1-t)(+t)=m,t=1-,点D的纵坐标为+2t=+2(1-)=8-,D(1,8-),1(8-)=n,m+n=2点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四

26、边形是解本题的关键22、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个【解析】(1)根据1.52小时的圆心角度数求出1.52小时所占的百分比,再用1.52小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360乘以学习时间在22.5小时所占的百分比,即可求出学习时间在22.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所

27、占的百分比即可得出答案【详解】解:(1)本次抽样调查的家庭数是:30200(个);故答案为200;(2)学习0.51小时的家庭数有:20060(个),学习22.5小时的家庭数有:20060903020(个),补图如下:(3)学习时间在22.5小时的部分对应的扇形圆心角的度数是:36036;故答案为36;(4)根据题意得:30002100(个)答:该社区学习时间不少于1小时的家庭约有2100个【点睛】本题考查条形统计图、扇形统计图及相关计算在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360的比23、见解析【解析】作CAB=,再作CAB的平分线,在角平分线上截取AD=

28、h,可得点D,过点D作AD的垂线,从而得出ABC【详解】解:如图所示,ABC即为所求【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键24、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【解析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的

29、取值范围,利用一次函数的性质求解可得【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(803x)台根据题意得:12002x+1600x+2000(803x)132000,解得:x14,商场至少购进乙种电冰箱14台;(2)由题意得:2x803x且x14,14x16,W=2202x+260x+280(803x)=140x+22400,W随x的增大而减小,当x=14时,W取最大值,且W最大=14014+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁