《广东省深圳市南山区南山中学英文校2023届中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省深圳市南山区南山中学英文校2023届中考数学猜题卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知一次函数y=2x+3,当0x5时,函数y的最大值是()A0 B3 C3 D72 “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A675102B67.510
2、2C6.75104D6.751053已知,如图,AB是O的直径,点D,C在O上,连接AD、BD、DC、AC,如果BAD25,那么C的度数是()A75B65C60D504在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是( )ABCD5对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点6tan45的值等于()ABCD17若,则的值为( )A6 B6 C18 D308在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变
3、,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小9下列立体图形中,主视图是三角形的是( )ABCD10下面的几何体中,主(正)视图为三角形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,已知函数yx+2的图象与函数y(k0)的图象交于A、B两点,连接BO并延长交函数y(k0)的图象于点C,连接AC,若ABC的面积为1则k的值为_12一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别现从袋子中随机摸出一个球,则它是黑球的概率是_13计算(a)3a2的结果等于_14如图所示,一动点从半径为2的O上的A0点出发,沿着射
4、线A0O方向运动到O上的点A1处,再向左沿着与射线A1O夹角为60的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60的方向运动到O上的点A4处;A4A0间的距离是_;按此规律运动到点A2019处,则点A2019与点A0间的距离是_15一个n边形的每个内角都为144,则边数n为_16已知一组数据,2,3,1,6的中位数为1,则其方差为_17如图,AB是O的直径,且经过弦CD的中点H,过CD延长线上一点E作O的切线,切点为F若ACF=65,则E= 三、解答题(共7小题,满分69分)18(10分)的除以20与18的差,商是多少?1
5、9(5分)先化简代数式,再从2,2,0三个数中选一个恰当的数作为a的值代入求值20(8分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值21(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长22(10分)博鳌亚洲论坛2018年年会于4月
6、8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m旗杆DB的长度为2m,DB与墙面AB的夹角DBG为35当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离(结果精确到0.1m参考数据:sin350.57,cos350.82,tan350.70)23(12分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一
7、个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率24(14分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH(1)填空:AHC ACG;(填“”或“”或“”)(2)线段AC,AG,AH什么关系?请说明理
8、由;(3)设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】【分析】由于一次函数y=-2x+3中k=-20由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0x5范围内函数值的最大值【详解】一次函数y=2x+3中k=20,y随x的增大而减小,在0x5范围内,x=0时,函数值最大20+3=3,故选B【点睛】本题考查了一次函数y=kx+b的图象的性质:k0,y随x的增大而增大;k0,y随x的增大而减小2、
9、C【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75104,故选C.3、B【解析】因为AB是O的直径,所以求得ADB=90,进而求得B的度数,又因为B=C,所以C的度数可求出解:AB是O的直径,ADB=90BAD=25,B=65,C=B=65(同弧所对的圆周角相等)故选B4、B【解析】根据中心对称图形的概念
10、,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑时,所形成的图形关于点A中心对称。故选B。5、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.6、D【解析】根据特殊角三角函数值,可得答案【详解】解:tan45=1,故选D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键7、B【解析】试题分析:,即,原式=12+18=1
11、故选B考点:整式的混合运算化简求值;整体思想;条件求值8、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义9、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,
12、符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看10、C【解析】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形故选C二、填空题(共7小题,每小题3分,满分21分)11、3【解析】连接OA根据反比例函数的对称性可得OB=OC,那么SOAB=SOAC=SABC=2求出直线y=x+2与y轴交点D的坐标设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据SOAB=2,得出a-b=2根据SOA
13、C=2,得出-a-b=2,与联立,求出a、b的值,即可求解【详解】如图,连接OA由题意,可得OB=OC,SOAB=SOAC=SABC=2设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),SOAB=2(a-b)=2,a-b=2 过A点作AMx轴于点M,过C点作CNx轴于点N,则SOAM=SOCN=k,SOAC=SOAM+S梯形AMNC-SOCN=S梯形AMNC=2,(-b-2+a+2)(-b-a)=2,将代入,得-a-b=2 ,+,得-2b=6,b=-3,-,得2a=2,a=1,A(1,3),k=13=3故答案为3【点睛】本题考查了反比
14、例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中根据反比例函数的对称性得出OB=OC是解题的突破口12、【解析】根据概率的概念直接求得.【详解】解:46=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.13、a5【解析】根据幂的乘方和积的乘方运算法则计算即可.【详解】解:(-a)3a2=-a3a2=-a3+2=-a5.故答案为:-a5.【点睛】本题考查了幂的乘方和积的乘方运算.14、 1 【解析】据题意求得A0A14,A0A1,A0A31,A0A4,A0A51,A0A60,A
15、0A74,于是得到A1019与A3重合,即可得到结论【详解】解:如图,O的半径1,由题意得,A0A14,A0A1,A0A31,A0A4,A0A51,A0A60,A0A74,101963363,按此规律A1019与A3重合,A0A1019A0A31,故答案为,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键15、10【解析】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36,因为多边形的外角和是360,所以这个多边形的边数等于36036=10,故答案为:1016、3【解析】试题分析:
16、数据3,x,3,3,3,6的中位数为3,解得x=3,数据的平均数=(33+3+3+3+6)=3,方差=(33)3+(33)3+(33)3+(33)3+(33)3+(63)3=3故答案为3考点:3方差;3中位数17、50【解析】解:连接DF,连接AF交CE于G,EF为O的切线,OFE=90,AB为直径,H为CD的中点ABCD,即BHE=90,ACF=65,AOF=130,E=360-BHE-OFE-AOF=50,故答案为:50.三、解答题(共7小题,满分69分)18、【解析】根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可【详解】解:(2018)【点睛】考查有理数的混合运
17、算,列出式子是解题的关键.19、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和2.试题解析:原式=当a=0时,原式=2.考点:分式的化简求值.20、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】
18、本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键21、(1);(2)详见解析;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是
19、正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90,EOF=90,BOF+COE=90,BOE=COF,在BOE和COF中, BOECOF(ASA),S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD (2)证明:EOG=BOE,OEG=OBE=45,OEGOBE,OE:OB=OG:OE,OGOB=OE2, OGBD=EF2;(3)如图,过点O作OHBC,BC=1, 设AE=x,则BE=CF=1x,BF=x,SBEF+SCOF=BEBF+CFOH 当时,SBEF+SCOF最大;即在旋转过程中,当BEF与COF的面积之和最大时, 【点睛
20、】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题注意掌握转化思想的应用是解此题的关键22、(1)1m(1)1.5 m【解析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1) 分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,利用sinDBM=及cosDEH=,可求出EH,HN即可得出答案.【详解】解:(1)在RtDEF中,由题意知ED=1.6 m,BD=1 m,DF=1答:DF长为1m(1)分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,在RtDBM
21、中,sinDBM=,DM=1sin351.2EDC=CNB,DCE=NCB,EDC=CBN=35,在RtDEH中,cosDEH=,EH=1.6cos351.3EN=EH+HN=1.3+1.2=1.451.5m答:E点离墙面AB的最远距离为1.5 m【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。23、(1);(2)【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,
22、C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.考点:列表法与树状图法;概率公式24、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.【详解】(1)四边形ABCD
23、是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,BMEMCE+MEC,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题