广东省东莞市虎门汇英校2023年中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:87994371 上传时间:2023-04-19 格式:DOC 页数:20 大小:1.13MB
返回 下载 相关 举报
广东省东莞市虎门汇英校2023年中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共20页
广东省东莞市虎门汇英校2023年中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《广东省东莞市虎门汇英校2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省东莞市虎门汇英校2023年中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法错误的是()A的相反数是2B3的倒数是CD,0,4这三个数中最小的数是02某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了

2、5.5万元这批电话手表至少有()A103块B104块C105块D106块3在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是ABCD4如图,直线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35,则EOD的度数是( )A155B145C135D1255如图,在下列条件中,不能判定直线a与b平行的是( )A1=2B2=3C3=5D3+4=1806下列博物院的标识中不是轴对称图形的是( )ABCD7已知A(x1,y1),B(x2,y2)是反比例函数y(k0)图象上的两个点,当x1x20时,y1y2,那么一次函数ykxk的图象不经过()A第一象限 B第二象限 C

3、第三象限 D第四象限8下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a29如图,在ABC中,ACB=90,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D510某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为ABx(x+1)=1980C2x(x+1)=1980Dx(x-1)=1980二、填空题(共7小题,每小题3分,满分21分)11一机器人以0.2m/s的速度在平地上按下图中

4、的步骤行走,那么该机器人从开始到停止所需时间为_s12如图,在边长为4的菱形ABCD中,A=60,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则线段AC长度的最小值是_13如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.14若点A(3,4)、B(2,m)在同一个反比例函数的图象上,则m的值为 15如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点若,则的长为_16二次根式中,x的取值范围是 17如图,在中, ,点在上,交于点,交于点,当时,_三、解答题(共7小题,满分

5、69分)18(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.19(5分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,

6、M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标20(8分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长21(10分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为

7、C的切线(2)求图中阴影部分的面积22(10分)已知抛物线y=a(x+3)(x1)(a0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=x+b与抛物线的另一个交点为D(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?23(12分)如图,已知

8、等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过D作DEAC,垂足为E证明:DE为O的切线;连接OE,若BC4,求OEC的面积24(14分) (1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:2的相反数是2,A正确;3的倒数是,B正确;(3)(5)=3+5=2,C正确;11,0,4这三个数中最小的数是11,D错误,故选D考点:1相反数;2倒数;3有理数大小比较;4有理数的减法2、C【解析】试题分析:根据题意

9、设出未知数,列出相应的不等式,从而可以解答本题设这批手表有x块,55060+(x60)50055000 解得,x104 这批电话手表至少有105块考点:一元一次不等式的应用3、A【解析】由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可【详解】解:由题意得,由勾股定理得,故选:A【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边4、D【解析】解: EOAB, 故选D.5、C【解析】解:A1与2是直线a,b被c所截的一组同位角,1=2,可以得到ab,不符合题意B2与3是直线a,b被c所截的一组内错角,2=3,可以得到ab

10、,不符合题意,C3与5既不是直线a,b被任何一条直线所截的一组同位角,内错角,3=5,不能得到ab,符合题意,D3与4是直线a,b被c所截的一组同旁内角,3+4=180,可以得到ab,不符合题意,故选C【点睛】本题考查平行线的判定,难度不大6、A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误7、B【解析

11、】试题分析:当x1x20时,y1y2,可判定k0,所以k0,即可判定一次函数y=kxk的图象经过第一、三、四象限,所以不经过第二象限,故答案选B考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系8、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键9、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据

12、面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90,点D为AB的中点,CD=AB=,SABC=36=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则CDAE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等10

13、、D【解析】根据题意得:每人要赠送(x1)张相片,有x个人,然后根据题意可列出方程【详解】根据题意得:每人要赠送(x1)张相片,有x个人,全班共送:(x1)x=1980,故选D【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x1)张相片,有x个人是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360,我们可以计算机器人所转的回数,即36045=8,则机器人的行走路线是沿

14、着一个正八边形的边长行走一周,故机器人一共行走68=48m,根据时间=路程速度,即可得出结果.本题解析: 依据题中的图形,可知机器人一共转了360,36045=8,机器人一共行走68=48m该机器人从开始到停止所需时间为480.2=240s12、 【解析】解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60,M为AD中点,2MD=AD=CD=2,FDM=60,FMD=30,FD=MD=1,FM=DMcos30=,AC=MCMA=故答案为【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A点位置是解题关键13、1

15、【解析】首先连接BE,由题意易得BF=CF,ACOBKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在RtOBF中,即可求得tanBOF的值,继而求得答案【详解】如图,连接BE,四边形BCEK是正方形,KF=CF=CK,BF=BE,CK=BE,BECK,BF=CF,根据题意得:ACBK,ACOBKO,KO:CO=BK:AC=1:3,KO:KF=1:1,KO=OF=CF=BF,在RtPBF中,tanBOF=1,AOD=BOF,tanAOD=1故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助

16、线,注意转化思想与数形结合思想的应用14、1【解析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3(4)=2m,然后解关于m的方程即可【详解】解:设反比例函数解析式为y=,根据题意得k=3(4)=2m,解得m=1故答案为1考点:反比例函数图象上点的坐标特征15、13【解析】根据正方形的性质得出AD=AB,BAD=90,根据垂直得出DEA=AFB=90,求出EDA=FAB,根据AAS推出AEDBFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】ABCD是正方形(已知),AB=AD,ABC=BAD=90;又FAB+FBA=FAB+EAD=90

17、,FBA=EAD(等量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出AEDBFA是解此题的关键16、【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须17、1【解析】如图作PQAB于Q,PRBC于R由QPERPF,推出=2,可得PQ=2PR=2BQ,由PQBC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x

18、,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题【详解】如图,作PQAB于Q,PRBC于RPQB=QBR=BRP=90,四边形PQBR是矩形,QPR=90=MPN,QPE=RPF,QPERPF,=2,PQ=2PR=2BQPQBC,AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,2x+1x=1,x=,AP=5x=1故答案为:1【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型三、解答题(共7小题,满分69分)18、50 见解析(3)

19、115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2

20、,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.19、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有

21、OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形

22、,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重

23、合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:

24、t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO

25、=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性20、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45,即可证得

26、AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45ACEBCDAE=BD=12,EAC=B=45EAD=EAC+BAC=90,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.21、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出

27、即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键22、(1)y=(x+3)(x1)=x22x+3;(2)(4,)和(6,3)(3)(1,4)【解析】试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)

28、作PHx轴于H,设点P的坐标为(m,n),分BPAABC和PBAABC,根据相似三角形的性质计算即可;(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可试题解析:(1)y=a(x+3)(x1),点A的坐标为(3,0)、点B两的坐标为(1,0),直线y=x+b经过点A,b=3,y=x3,当x=2时,y=5,则点D的坐标为(2,5),点D在抛物线上,a(2+3)(21)=5,解得,a=,则抛物线的解析式为y=(x+3)(x1)=x22x+3;(2)作PHx轴于H,设点P的坐标为(m,n),当BPAABC时,BAC=PBA,tan

29、BAC=tanPBA,即=,=,即n=a(m1),解得,m1=4,m2=1(不合题意,舍去),当m=4时,n=5a,BPAABC,=,即AB2=ACPB,42=,解得,a1=(不合题意,舍去),a2=,则n=5a=,点P的坐标为(4,);当PBAABC时,CBA=PBA,tanCBA=tanPBA,即=,=,即n=3a(m1),解得,m1=6,m2=1(不合题意,舍去),当m=6时,n=21a,PBAABC,=,即AB2=BCPB,42=,解得,a1=(不合题意,舍去),a2=,则点P的坐标为(6,),综上所述,符合条件的点P的坐标为(4,)和(6,);(3)作DMx轴交抛物线于M,作DNx轴

30、于N,作EFDM于F,则tanDAN=,DAN=60,EDF=60,DE=EF,Q的运动时间t=+=BE+EF,当BE和EF共线时,t最小,则BEDM,E(1,4)考点:二次函数综合题.23、 (1)证明见解析;(2)【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的O,可得CDAB,又由等腰三角形ABC的底角为30,可得AD=BD,即可证得ODAC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得BOD,ODE,ADE以及ABC的面积,继而求得答案试题解析:(1)证明:连接OD,CD,BC为O直径,BDC=90,即CDAB,ABC是等腰三角形,AD=

31、BD,OB=OC,OD是ABC的中位线,ODAC,DEAC,ODDE,D点在O上,DE为O的切线;(2)解:A=B=30,BC=4,CD=BC=2,BD=BCcos30=2,AD=BD=2,AB=2BD=4,SABC=ABCD=42=4,DEAC,DE=AD=2=,AE=ADcos30=3,SODE=ODDE=2=,SADE=AEDE=3=,SBOD=SBCD=SABC=4=,SOEC=SABC-SBOD-SODE-SADE=4-=24、(1);(2)当坐标为时,取得最小值为.【解析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值【详解】解:(1)得:解得:把代入得,则方程组的解为(2 )由题意得:,当坐标为时,取得最小值为.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁