《广东省广州市第五中学2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省广州市第五中学2023届十校联考最后数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点
2、,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D2在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A13.51106B1.351107C1.351106D0.15311083把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)24如图,为测
3、量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m25计算的结果是()ABCD16将一根圆柱形的空心钢管任意放置,它的主视图不可能是()ABCD7的值等于( )ABCD8从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分
4、的面积,可以验证成立的公式为( )ABCD9如图,边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,图中阴影部分的面积为( )ABCD10如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,则 的度数是 ABCD11如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D912如图,ABC中,D、E分别为AB、AC的中点,已知ADE的面积为1,那么ABC的面积是()A2B3C4D5二、填空题:(本大题共6个小题,每小题4分,共24分)13已知a+2,求a2+_14若函数y
5、=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 15分解因式:a3-12a2+36a=_16如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_17老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2x22x+1x2+5x3:则所捂住的多项式是_18如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药
6、品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率20(6分)某市旅游部门统计了今年“五一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人
7、会选择去景点D旅游?21(6分)已知,斜边,将绕点顺时针旋转,如图1,连接(1)填空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?22(8分)计算:2sin60(2)0+(_)-1+|1|23(8分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点(点B在点A的右侧)(1)当y=0时,求x的值(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线M
8、P与x轴交于点C,求cotMCB的值24(10分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?25(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y
9、(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接写出两车相距300千米时的x值26(12分)如图1,在四边形ABCD中,ADBC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90得到PQ(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长27(12
10、分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选2、B【解析】根据科学记数法进行解答.【详解】1315万即13510000
11、,用科学记数法表示为1.351107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a10n(1a10且n为整数).3、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键4、D【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可【详解】经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,小石子落在不规则区域的概率为0.65,正方形的边长为4m,
12、面积为16 m2设不规则部分的面积为s m2则=0.65解得:s=10.4故答案为:D【点睛】利用频率估计概率5、D【解析】根据同分母分式的加法法则计算可得结论【详解】=1故选D【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则6、A【解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视图不可能是故选A.7、C【解析】试题解析:根据特殊角的三角函数值,可知: 故选C.8、D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式【详解】阴影部分的面积相等,即甲的面积=a2b2,
13、乙的面积=(a+b)(ab)即:a2b2=(a+b)(ab)所以验证成立的公式为:a2b2=(a+b)(ab)故选:D【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质9、C【解析】设BC与CD的交点为E,连接AE,利用“HL”证明RtABE和RtADE全等,根据全等三角形对应角相等DAEBAE,再根据旋转角求出DAB60,然后求出DAE30,再解直角三角形求出DE,然后根据阴影部分的面积正方形ABCD的面积四边形ADEB的面积,列式计算即可得解【详解】如图,设BC与CD的交点为E,连接AE,在RtABE和RtADE中,RtABERtADE(HL),DAEBAE,旋转角为30
14、,DAB60,DAE6030,DE1,阴影部分的面积112(1)1故选C【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出DAEBAE,从而求出DAE30是解题的关键,也是本题的难点10、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90,CEF=15,AEB=180-90-15=75,B=180-BAE-AEB=180-40-75=65,四边形ABCD是平行四边形,D=B=65故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知
15、识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型11、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.12、C【解析】根据三角形的中位线定理可得DEBC,即可证得ADEABC,根据相似三角形面积的比等于相似比的平方可得,已知ADE的面积为1,即可求得SABC1【详解】D、E分别是AB、AC的中点,DE是ABC的中位
16、线,DEBC,ADEABC,()2,ADE的面积为1,SABC1故选C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得ADEABC,根据相似三角形面积的比等于相似比的平方得到是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:=4,=4-1=1故答案为1考点:完全平方公式14、0或1【解析】分析:需要分类讨论:若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;若m0,则函数y=mx2+2x+1是二次函数,根据题意得:=44m=0,解得:m=1。当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。15
17、、a(a-6)2【解析】原式提取a,再利用完全平方公式分解即可【详解】原式=a(a2-12a+36)=a(a-6)2, 故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键16、【解析】由DEBC不难证明ABCADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DEBC不难证明ABCADE,,CE=4,,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.17、x2+7x-4【解析】设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所
18、捂的多项式为A,则根据题目信息可得 他所捂的多项式为故答案为【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;18、1【解析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题【详解】解:四边形ABCD是矩形,AD=BC=8,AB=CD=6,ABC=90, AO=OC, AO=OC,AM=MD=4, 四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1故答案为:1【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型三、解答题:(本大题共
19、9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是20、(1)60人;(2)144,补全图形见解析;(3)15万人.【解析】(1)用B景点人数除以其所占百分比可得;(2
20、)用360乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五一”放假期间该市这四个景点共接待游客的总人数为1830%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360=144,C景点人数为60(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90=15(万人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1
21、)1;(2);(3)x时,y有最大值,最大值【解析】(1)只要证明OBC是等边三角形即可;(2)求出AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:当0x时,M在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E当x4时,M在BC上运动,N在OB上运动当4x4.8时,M、N都在BC上运动,作OGBC于G【详解】(1)由旋转性质可知:OBOC,BOC1,OBC是等边三角形,OBC1故答案为1(2)如图1中OB4,ABO30,OAOB2,ABOA2,SAOCOAAB22BOC是等边三角形,OBC1,ABCABO+OBC90,AC,OP(3)当0x时,M
22、在OC上运动,N在OB上运动,此时过点N作NEOC且交OC于点E则NEONsin1x,SOMNOMNE1.5xx,yx2,x时,y有最大值,最大值当x4时,M在BC上运动,N在OB上运动作MHOB于H则BM81.5x,MHBMsin1(81.5x),yONMHx2+2x当x时,y取最大值,y,当4x4.8时,M、N都在BC上运动,作OGBC于GMN122.5x,OGAB2,yMNOG12x,当x4时,y有最大值,最大值2综上所述:y有最大值,最大值为【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题22
23、、2+1【解析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解【详解】原式=-1+3+= -1+3+=2+1.【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键23、(1),;(2)【解析】(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cotMCB.【详解】(1)把代入函数解析式得,即,解得:,. (2)把代入得,即得,二次函数,与轴的交点为,点坐标为. 设直线的解析式为,代入,
24、得解得, 点坐标为, 在中,又.【点睛】本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.24、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案【详解】(1)设A种品牌的化
25、妆品每套进价为x元,B种品牌的化妆品每套进价为y元得 解得:,答:A、B两种品牌得化妆品每套进价分别为100元,75元(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50m)套根据题意得:100m+75(50m)4000,且50m0,解得,5m10,利润是30m+20(50m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解2
26、5、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10;(4)当x=2小时或x=4小时时,两车相距300千米【解析】(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0x4时y与x之间的函数关系式,将y=300
27、分别代入0x4时及4x时的函数关系式中求出x值,此题得解【详解】解:(1)当x=0时,y=10,甲乙两地相距10千米1010=1(千米/小时)故答案为10;1(2)设快车的速度为a千米/小时,根据题意得:4(1+a)=10,解得:a=2答:快车速度是2千米/小时(3)快车到达甲地的时间为102=(小时),当x=时,两车之间的距离为1=400(千米)设当4x时,y与x之间的函数关系式为y=kx+b(k0),该函数图象经过点(4,0)和(,400),解得:,从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10(4)设当0x4时,y与x之间的函数关系式为y=mx+n(m0),该函数图象
28、经过点(0,10)和(4,0),解得:,y与x之间的函数关系式为y=150x+10当y=300时,有150x+10=300或150x10=300,解得:x=2或x=4当x=2小时或x=4小时时,两车相距300千米【点睛】本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值26、(1) ;(2)5;(3)PB的值为或
29、【解析】(1)如图1中,作AMCB用M,DNBC于N,根据题意易证RtABMRtDCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AMCB用M,DNBC于NDNM=AMN=90,ADBC,DAM=AMN=DNM
30、=90,四边形AMND是矩形,AM=DN,AB=CD=13,RtABMRtDCN,BM=CN,AD=11,BC=21,BM=CN=5,AM=12,在RtABM中,sinB=(2)如图2中,连接AC在RtACM中,AC=20,PB=PA,BE=EC,PE=AC=10,的长=5(3)如图3中,当点Q落在直线AB上时,EPBAMB,=,=,PB=如图4中,当点Q在DA的延长线上时,作PHAD交DA的延长线于H,延长HP交BC于G设PB=x,则AP=13xADBC,B=HAP,PG=x,PH=(13x),BG=x,PGEQHP,EG=PH,x=(13x),BP=综上所述,满足条件的PB的值为或【点睛】
31、本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.27、(1)见解析;(2)tanDBC【解析】(1)先利用圆周角定理得到ACB90,再利用平行线的性质得AEO90,则根据垂径定理得到,从而有ADCD;(2)先在RtOAE中利用勾股定理计算出AE,则根据正切的定义得到tanDAE的值,然后根据圆周角定理得到DACDBC,从而可确定tanDBC的值【详解】(1)证明:AB为直径,ACB90,ODBC,AEOACB90,OEAC,ADCD;(2)解:AB10,OAOD5,DEODOE532,在RtOAE中,AE4,tanDAE,DACDBC,tanDBC【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.