《广东省华师附中实验校2023届中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省华师附中实验校2023届中考冲刺卷数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小2如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别
2、交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则ABD的面积是()A18B36C54D723如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A点MB点NC点PD点Q4下列因式分解正确的是( )ABCD5如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )ABCD6如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m)
3、,B(4,n)平移后的对应点分别为点A、B若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+47某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A50和48B50和47C48和48D48和438二次函数yax2bxc(a0)的图象如图,下列结论正确的是() Aa0Bb24ac0C当1x0D=19如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D310把直线l:y=kx+b绕着原点旋转180,再向左平移1个单位长度后,
4、经过点A(-2,0)和点B(0,4),则直线l的表达式是( )Ay=2x+2By=2x-2Cy=-2x+2Dy=-2x-2二、填空题(本大题共6个小题,每小题3分,共18分)11如图所示,ABC的顶点是正方形网格的格点,则sinA的值为_12方程3x25x+2=0的一个根是a,则6a210a+2=_13关于x的方程x23x20的两根为x1,x2,则x1x2x1x2的值为_14如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_.(精确到)15如图,将直尺与含30角的三角尺摆放在一起,若1=20,则2的度数是_.16一位
5、小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为_cm三、解答题(共8题,共72分)17(8分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到AFB,连接EF求证:EFED;若AB2,CD1,求FE的长18(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF求证:(1)ABECDF;四边形BFDE是平行四边形19(8分)A,B两地相
6、距20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值20(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AGBC于点G,AFDE于点F,EAF=GAC求证:ADEABC;若AD=3,AB=5,求的值
7、21(8分)反比例函数的图象经过点A(2,3)(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由22(10分)某通讯公司推出,两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示有月租的收费方式是_(填“”或“”),月租费是_元;分别求出,两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议23(12分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1
8、点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 ACCB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图,把长方形沿着 OP 折叠,点 B 的对应点 B恰好落在 AC 边上,求点 P 的坐标(3)点 P 在运动过程中是否存在使BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由24为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表调查结果统计表组别分组(单位:元)人
9、数A0x304B30x6016C60x90aD90x120bEx1202请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b ,m ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60x120范围的人数参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图2、B【解析】根据题意可知AP为CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论【详解】由题意可知AP为CAB的平分线,过点
10、D作DHAB于点H,C=90,CD=1,CD=DH=1AB=18,SABD=ABDH=181=36故选B【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键3、C【解析】试题分析:点M,N表示的有理数互为相反数,原点的位置大约在O点,绝对值最小的数的点是P点,故选C考点:有理数大小比较4、C【解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确故选C【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公
11、式法的方法5、C【解析】试题解析:四边形ABCD是平行四边形, 故选C.6、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D7、A【解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A【
12、点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.8、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:抛物线开口向上,A选项错误,抛物线与x轴有两个交点, B选项错误,由图象可知,当1x3时,y0C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(1,0)和(3,0)可知对称轴为 即1,D选项正确,故选D.9、D【解析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形
13、的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120是解决问题的关键10、B【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180即可得到直线l【详解】解:设直线AB的解析式为ymxnA(2,0),B(0,1), ,解得 ,直线AB的解析式为y2x1将直线AB向右平移1个单位长度后得到的解析式为y2(x1)1,即y2x2,再将y2x2绕着原点旋转180后得到的解析式为y2x2,即y2x2,所以直线l的表达式是y2x2故选:B【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称
14、的规律是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:连接CE,根据图形可知DC=1,AD=3,AC=,BE=CE=,EBC=ECB=45,CEAB,sinA=,故答案为考点:勾股定理;三角形的面积;锐角三角函数的定义12、-1【解析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可【详解】解:方程3x1-5x+1=0的一个根是a,3a1-5a+1=0,3a1-5a=-1,6a1-10a+1=1(3a1-5a)+1=-11+1=-1故答案是:-1【点睛
15、】此题主要考查了方程解的定义此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值13、5【解析】试题分析:利用根与系数的关系进行求解即可.解:x1,x2是方程x23x20的两根,x1+ x2,x1x2,x1x2x1x23+25.故答案为:5.14、9.1【解析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x轴,门洞中点为O点,画出y轴,建立直角坐标系由题意可知各点坐标为A(-4,0)B(4,0)D(-3,4)设抛物线解析式为y=ax2+c(a0)把B、D
16、两点带入解析式可得解析式为,则C(0,)所以门洞高度为m9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键15、50【解析】先根据三角形外角的性质求出BEF的度数,再根据平行线的性质得到2的度数【详解】如图所示:BEF是AEF的外角,1=20,F=30,BEF=1+F=50,ABCD,2=BEF=50,故答案是:50【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和)16、【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O
17、1O2,圆弧,线段O3O4四部分构成其中O1EAB,O1FBC,O2CBC,O3CCD,O4DCDBC与AB延长线的夹角为60,O1是圆盘在AB上滚动到与BC相切时的圆心位置,此时O1与AB和BC都相切则O1BE=O1BF=60度此时RtO1BE和RtO1BF全等,在RtO1BE中,BE=cmOO1=AB-BE=(60-)cmBF=BE=cm,O1O2=BC-BF=(40-)cmABCD,BC与水平夹角为60,BCD=120度又O2CB=O3CD=90,O2CO3=60度则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60且半径为10cm的圆弧的长=210=cm四边形O3O4DC是矩形,O3O
18、4=CD=40cm综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是:(60-)+(40-)+40=(140-+)cm三、解答题(共8题,共72分)17、(1)见解析;(2)EF.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90,利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED(SAS),DEEF(2)ABAC2,B
19、AC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键18、(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABECDF(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得ADBC,AD=BC,又由AE=CF,即可证得DE=BF根据对边平行
20、且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形【详解】证明:(1)四边形ABCD是平行四边形,A=C,AB=CD,在ABE和CDF中,AB=CD,A=C,AE=CF,ABECDF(SAS)(2)四边形ABCD是平行四边形,ADBC,AD=BCAE=CF,ADAE=BCCF,即DE=BF四边形BFDE是平行四边形19、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】(
21、)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是101.8=18(km),当甲离开A的距离20km时,甲的行驶时间是2010=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是400.5=20(km),故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解
22、题的关键.20、(1)证明见解析;(2)【解析】(1)由于AGBC,AFDE,所以AFE=AGC=90,从而可证明AED=ACB,进而可证明ADEABC;(2)ADEABC,又易证EAFCAG,所以,从而可求解【详解】(1)AGBC,AFDE,AFE=AGC=90,EAF=GAC,AED=ACB,EAD=BAC,ADEABC,(2)由(1)可知:ADEABC,由(1)可知:AFE=AGC=90,EAF=GAC,EAFCAG,=考点:相似三角形的判定21、(1)y= (2)点B(1,6)在这个反比例函数的图象上【解析】(1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;
23、(2)根据反比例函数图象上点的坐标特征进行判断【详解】设反比例函数的解析式是,则,得则这个函数的表达式是;因为,所以点不在函数图象上【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数图象上点的坐标特征22、 (1)30;(2)y10.1x30,y20.2x;(3)当通话时间少于300分钟时,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间为300分钟时,选择通话方式,花费一样【解析】试题分析:(1)
24、根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可解:(1);30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,k1=0.1,500k2=100,k2=0.2故所求的解析式为y1=0.1x+30; y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1故由图可知当通话时间
25、在300分钟内,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间在300分钟时,选择通话方式、一样实惠23、(1)y=x+2;(2)y=x+2;(2)S=2t+16,点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;设P(m,1),则PB=PB=m,根据勾股定理求出m的值,求出此时P坐标即可;
26、(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可详解:(1)如图1,OA=6,OB=1,四边形OACB为长方形,C(6,1)设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+12t=162t,S=2(162t)=2t+16;设P(m,1),则PB=PB=m,如图2,OB=OB=1,OA=6,AB=8,BC=18=2,PC=6m,m2=22+(6m)2,解得m=则此时点P的坐标是(,1);(3
27、)存在,理由为:若BDP为等腰三角形,分三种情况考虑:如图3,当BD=BP1=OBOD=12=8,在RtBCP1中,BP1=8,BC=6,根据勾股定理得:CP1=2,AP1=12,即P1(6,12);当BP2=DP2时,此时P2(6,6);当DB=DP3=8时,在RtDEP3中,DE=6,根据勾股定理得:P3E=2,AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题
28、第一问的关键24、50;28;8【解析】【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(18%32%16%4%) 36040% 360144.即扇形统计图中扇形C的圆心角度数为144;(3)1000560(人).即每月零花钱的数额x元在60x120范围的人数为560人【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.