《广东省汕头市潮阳区铜盂中学2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省汕头市潮阳区铜盂中学2023年中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1下列计算结果等于0的是( )ABCD2若3x3y,则下列不等式中一定成立的是 ( )ABCD3下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行
2、四边形D平行四边形既是中心对称图形,又是轴对称图形4方程x(x2)x20的两个根为( )A,B,C ,D, 5如图,已知,用尺规作图作第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )A以点为圆心,长为半径画弧,与第1步所画的弧相交于点B以点为圆心,长为半径画弧,与第1步所画的弧相交于点C以点为圆心,长为半径画弧,与第1步所画的弧相交于点D以点为圆心,长为半径画弧,与第1步所画的弧相交于点6在RtABC中,C=90,BC=a,AC=b,AB=c,下列各式中正确的是()Aa=bcosABc=asinACacotA=bDatanA=b7下列运算中,正确的是()A(a3)2
3、=a5B(x)2x=xCa3(a)2=a5D(2x2)3=8x68如图,以正方形ABCD的边CD为边向正方形ABCD外作等边CDE,AC与BE交于点F,则AFE的度数是()A135B120C60D459如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD410已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x3二、填空题(本大题共6个小题,每小题3分,共18分)11(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个
4、三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是_12如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(ACAB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化已知AE5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_ m13已知ABCDEF,若ABC与DEF的相似比为,则ABC与DEF对应中线的比为_14不等式组的解集是 15估计无理数在连续整数_与_之间16分解因式:3a212=_三、解答题(共8题,共72分)17(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,
5、DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE18(8分)如图,AB为O的直径,点D、E位于AB两侧的半圆上,射线DC切O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且AED45(1)求证:CDAB;(2)填空:当DAE 时,四边形ADFP是菱形;当DAE 时,四边形BFDP是正方形19(8分)计算:|+(2017)02sin30+3120(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型
6、在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数 105 (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21(8分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为
7、t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由22(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能
8、让利于顾客,赢得市场,该店应按原售价的几折出售?23(12分)解分式方程:=24如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=0,符合题意;B、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键2、A【解析】两边都除以3,得xy,两边都加y,
9、得:x+y0,故选A3、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,
10、同时要根据条件合理、灵活地选择方法4、C【解析】根据因式分解法,可得答案【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键5、D【解析】根据作一个角等于已知角的作法即可得出结论【详解】解:用尺规作图作AOC=2AOB的第一步是以点O为圆心,以任意长为半径画弧,分别交OA、OB于点E、F,第二步的作图痕迹的作法是以点F为圆心,EF长为半径画弧故选:D【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键6、C【解析】C=90,cosA=,sin
11、A= ,tanA=,cotA=,ccosA=b,csinA=a,btanA=a,acotA=b,只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.7、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可【详解】(a3)2=a6,选项A不符合题意;(-x)2x=x,选项B不符合题意;a3(-a)2=a5,选项C不符合题意;(-2x2)3=-8x6,选项D符合题意故选D【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟
12、练掌握8、B【解析】易得ABF与ADF全等,AFD=AFB,因此只要求出AFB的度数即可【详解】四边形ABCD是正方形,AB=AD,BAF=DAF,ABFADF,AFD=AFB,CB=CE,CBE=CEB,BCE=BCD+DCE=90+60=150,CBE=15,ACB=45,AFB=ACB+CBE=60AFE=120故选B【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化9、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】
13、四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=AED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.10、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象106144二、填空题(本大题共6个小题,每小题3分,共18
14、分)11、10,【解析】解:如图,过点A作ADBC于点D,ABC边AB=AC=10,BC=12,BD=DC=6,AD=8,如图所示:可得四边形ACBD是矩形,则其对角线长为:10;如图所示:AD=8,连接BC,过点C作CEBD于点E,则EC=8,BE=2BD=12,则BC=;如图所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=故答案为10,12、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,最小值3m,AB=3m,影长最大时,木杆与光线垂直,即AC=5m,BC=4,又可得CABCFE, AE=5m, 解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性
15、质:相似三角形的对应边成比例.13、3:4【解析】由于相似三角形的相似比等于对应中线的比,ABC与DEF对应中线的比为3:4故答案为3:4.14、1x1【解析】解一元一次不等式组【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)因此,解第一个不等式得,x1,解第二个不等式得,x1,不等式组的解集是1x115、3 4 【解析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:,无理数在连续整数3与4之间【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.16
16、、3(a+2)(a2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,3a212=3(a24)=3(a+2)(a2)三、解答题(共8题,共72分)17、(1)见解析;(2)见解析.【解析】(1)由DAC=DCA,对顶角AED=BEC,可证BCEADE(2)根据相似三角形判定得出ADEBDA,进而得出BCEBDA,利用相似三角形的性质解答即可【详解】证明:(1)AD=DC,DAC=DCA,DC2=DEDB,=,CDE=BDC,CDEBDC,DCE=DBC,DAE=EBC,AED
17、=BEC,BCEADE,(2)DC2=DEDB,AD=DCAD2=DEDB,同法可得ADEBDA,DAE=ABD=EBC,BCEADE,ADE=BCE,BCEBDA,=,ABBC=BDBE【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解18、(1)详见解析;(2)67.5;90【解析】(1)要证明CDAB,只要证明ODFAOD即可,根据题目中的条件可以证明ODFAOD,从而可以解答本题;(2)根据四边形ADFP是菱形和菱形的性质,可以求得DAE的度数;根据四边形BFDP是正方形,可以求得DAE的度数【详解】(1)证明:连接OD,如图所示,射线DC切O于
18、点D,ODCD,即ODF90,AED45,AOD2AED90,ODFAOD,CDAB;(2)连接AF与DP交于点G,如图所示,四边形ADFP是菱形,AED45,OAOD,AFDP,AOD90,DAGPAG,AGE90,DAO45,EAG45,DAGPEG22.5,EADDAG+EAG22.5+4567.5,故答案为:67.5;四边形BFDP是正方形,BFFDDPPB,DPBPBFBFDFDP90,此时点P与点O重合,此时DE是直径,EAD90,故答案为:90【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质
19、解答19、 【解析】分析:化简绝对值、0次幂和负指数幂,代入30角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可详解:原式=+12+=点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键20、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的
20、概率,然后用3000乘以此概率可估计这3000人中是A型血的人数【详解】(1)这次随机抽取的献血者人数为510%=50(人),所以m=100=20,故答案为50,20;(2)O型献血的人数为46%50=23(人),A型献血的人数为5010523=12(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000=720,估计这3000人中大约有720人是A型血【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出
21、现的结果数除以所有可能出现的结果数 21、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)
22、当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3
23、)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=
24、60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度22、(1)4元或6元;(2)九折.【解析】解:(1)设每千克核桃应降价x元.根据题意,得(60x40)(100+20)=2240,化简,得 x210x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6
25、元. 要尽可能让利于顾客,每千克核桃应降价6元.此时,售价为:606=54(元),.答:该店应按原售价的九折出售.23、x=1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程两边都乘以x(x2),得:x=1(x2),解得:x=1,检验:x=1时,x(x2)=11=10,则分式方程的解为x=1【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验24、(1)详见解析;(2).【解析】四边形ABCD是矩形,B=C=90,AB=CD,BC=AD,ADBC,EAD=AFB,DEAF,AED=90,在ADE和FAB中,ADEFAB(AAS),AE=BF=1BF=FC=1BC=AD=2故在RtADE中,ADE=30,DE=,的长=.