《广东省深圳市育才第二中学2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省深圳市育才第二中学2023届中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()ABCD2为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计
2、划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD3若55+55+55+55+5525n,则n的值为()A10B6C5D34如图,函数y=的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180得c2,交x轴于
3、点A2;将c2绕点A2旋转180得c3,交x轴于点A3如此进行下去,若点P(103,m)在图象上,那么m的值是()A2B2C3D45的绝对值是( )ABCD6下列调查中,最适合采用全面调查(普查)方式的是( )A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功能的调查D对某校九年级3班学生肺活量情况的调查7为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.48已知A样本的数据如下:72,73,76,76,77,78,7
4、8,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )A平均数B标准差C中位数D众数9若数a,b在数轴上的位置如图示,则()Aa+b0Bab0Cab0Dab010下列运算正确的是( )Aa2a4=a8B2a2+a2=3a4Ca6a2=a3D(ab2)3=a3b611直线y=3x+1不经过的象限是()A第一象限B第二象限C第三象限D第四象限12如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10
5、,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)14江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_km115定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”如图,若P(1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B,C三个小区的坐标分别为A(3,1),B(1,3),C(1,1),若点M表示单车停放点,且满足M到
6、A,B,C的“实际距离”相等,则点M的坐标为_16分解因式:a2-2ab+b2-1=_17如果一个正多边形的中心角等于,那么这个正多边形的边数是_.18已知正比例函数的图像经过点M( )、,如果,那么_(填“”、“”、“”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于20
7、90万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a0),市政府如何确定方案才能使费用最少?20(6分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,)21(6分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2
8、)在(1)条件下,求证:AB2=BDBC22(8分)如图,直角ABC内接于O,点D是直角ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作ECP=AED,CP交DE的延长线于点P,连结PO交O于点F(1)求证:PC是O的切线;(2)若PC=3,PF=1,求AB的长23(8分)已知,抛物线yx2x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BMFM,在直线AC下方的抛物线上是否存在点P,使SACP4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如
9、图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OMON,求证:直线DE必经过一定点24(10分)如图,已知A=B,AE=BE,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED25(10分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?26(12分)为了落实国务院的指示精神,某地方政府出台了一系列“
10、三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为w元求w与x之间的函数关系式该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?27(12分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克
11、)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1在销售过程中,每天还要支付其他费用450元求出y与x的函数关系式,并写出自变量x的取值范围求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式当销售单价为多少元时,该公司日获利最大?最大获利是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据中位数的定义解答即可【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1所以这些运动员跳高成绩的中位数是1.1故选:C【点睛】本题考查了中位数的意义中位
12、数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数2、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25
13、001的平均数,该市居民家庭年用水量的中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键3、D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案【详解】解:55+55+55+55+55=25n,555=52n,则56=52n,解得:n=1故选D【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键4、C【解析】求出与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴
14、上方,然后求出到抛物线平移的距离,再根据向右平移横坐标加表示出抛物线的解析式,然后把点P的坐标代入计算即可得解【详解】令,则=0,解得,由图可知,抛物线在x轴下方,相当于抛物线向右平移4(261)=100个单位得到得到,再将绕点旋转180得,此时的解析式为y=(x100)(x1004)=(x100)(x104), 在第26段抛物线上,m=(103100)(103104)=3.故答案是:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p点所在函数表达式.5、C【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决【详解】在数轴上,点到原点的距离是,所以,
15、的绝对值是,故选C【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.6、D【解析】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D7、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B8、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样
16、本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择9、D【解析】首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案【详解】由数轴可知:a0b,a-1,0b1,所以,A.a+b0,故原选项错误;B. ab0,故原选项错误;C.a-b0,故原选项错误;D.,正确.故选D【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系10、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A
17、、a2a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确故选D考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方11、D【解析】利用两点法可画出函数图象,则可求得答案【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,函数图象不过第四象限,故选:D【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键12、C【解析】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C二、填空
18、题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确
19、,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答14、1.016105【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【详解】解:101 600=1.016105故答案为:1.016105【点睛】本题考查科学计数法,掌握概念正确表示是本
20、题的解题关键.15、(1,2)【解析】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2)故答案为(1,-2)16、 (ab1)(ab1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1)【点睛】本题考查用分组分解法进行因式分解难点是采用两两分组还是三一分组本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底17、12.【解
21、析】根据正n边形的中心角的度数为进行计算即可得到答案.【详解】解:根据正n边形的中心角的度数为,则n=36030=12,故这个正多边形的边数为12,故答案为:12.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.18、【解析】分析:根据正比例函数的图象经过点M(1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题详解:设该正比例函数的解析式为y=kx,则1=1k,得:k=0.5,y=0.5x正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1x1,y1y1故答案为点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,
22、利用正比例函数的性质解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a3时,取m=48时费用最省;当0a3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根
23、据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48m50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升1套方案三:甲种套房提升50套,乙种套房提升30套设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3
24、时,三种方案的费用一样,都是2240万元.当a3时,取m=48时费用W最省.当0a3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用20、1.4米.【解析】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,则EM=BC,在RtABE、RtCDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在RtMEF中利用勾股定理即可求出EM的长,此题得解【详解】过点B作BEAD于点E,过点C作CFAD于点F,延长FC到点M,使得BE=CM,如图所示,AB=CD,AB+CD=AD=2,AB=CD=1,在RtABE
25、中,AB=1,A=37,BE=ABsinA0.6,AE=ABcosA0.8,在RtCDF中,CD=1,D=45,CF=CDsinD0.7,DF=CDcosD0.7,BEAD,CFAD,BECM,又BE=CM,四边形BEMC为平行四边形,BC=EM,CM=BE在RtMEF中,EF=ADAEDF=0.5,FM=CF+CM=1.3,EM=1.4,B与C之间的距离约为1.4米【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键21、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,
26、交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质22、(1)证明见解析;(2)1【解析】试题分析:(1)连接OC,欲证明PC是O的切线,只要证明
27、PCOC即可;(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题试题解析:(1)如图,连接OC,PDAB,ADE=90,ECP=AED,又EAD=ACO,PCO=ECP+ACO=AED+EAD=90,PCOC,PC是O切线;(2)延长PO交圆于G点,PFPG=,PC=3,PF=1,PG=9,FG=91=1,AB=FG=1考点:切线的判定;切割线定理23、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使SACP4,见解析;(3)见解析【解析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使SACH4,求出点H坐标
28、,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,再由得出,进而求出,同理可得,再根据,即可得出结论【详解】(1)针对于抛物线,令x0,则,令y0,则,解得,x1或x3,综上所述:,;(2)由(1)知,BMFM,直线AC的解析式为:,联立抛物线解析式得:,解得:或,如图1,设H是直线AC下方轴x上一点,AHa且SACH4,解得:,过H作lAC,直线l的解析式为,联立抛物线解析式,解得,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂
29、足分别为G,H,设,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,DGx轴,DGOM,即,同理可得,即,直线DE的解析式为,直线DE必经过一定点【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.24、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即BED=AEC,在BED和AEC中,BEDAEC(ASA),ED=EC【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方
30、法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键25、(1)A种奖品每件16元,B种奖品每件4元(2)A种奖品最多购买41件【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100a)件,根据总价=单价购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论【详解】(1)设A种奖品每件
31、x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100a)件,根据题意得:16a+4(100a)900,解得:a,a为整数,a41,答:A种奖品最多购买41件【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.26、 (1);(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元【解析】(1)根据销售额=销售量销售价单x
32、,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1)由题意得:,w与x的函数关系式为:(2),20,当x=30时,w有最大值w最大值为2答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元(3)当w=150时,可得方程2(x30)2+2=150,解得x1=25,x2=3328,x2=3不符合题意,应舍去答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元27、(1)y=2x+200(30x60)(2)w=2(x65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可(2)根据利润计算公式列式即可;(3)进行配方求值即可【详解】(1)设y=kx+b,根据题意得解得:y=2x+200(30x60)(2)W=(x30)(2x+200)450=2x2+260x6450=2(x65)2 +2000)(3)W =2(x65)2 +200030x60x=60时,w有最大值为1950元当销售单价为60元时,该公司日获利最大,为1950元 考点:二次函数的应用