《广东省新朗实验校2023届中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省新朗实验校2023届中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A27B51C69D722以x为自变量的二次函数y=x22(b2)x+b21的图象不经过第三象限,则实数b的取值范围是( )Ab1.25Bb1或b1Cb2D1b23下列各数中,相反数等于本身的数是( )A1B0C1D24已知O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )A相交 B相切 C相离 D无法确定5如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到AC
3、B,则tanB的值为( )ABCD6已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A5cmB5cm或3cmC7cm或3cmD7cm7研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )A0.156105B0.156105C1.56106D1.561068九章算术中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10记作+10,则3表示气温为()A零上3B零下3C零上7D零下79如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方
4、差为()A4B3C2D110某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)112018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为_12如图,在菱形ABCD中,于E,则菱形ABCD的面积是_13在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为_14如图,AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,得到下面四个结论:OAOD;ADEF;当BAC90时,四边形AEDF是正方形;AE2DF2AF2DE2.其中正确的是_
5、(填序号)15如图,已知RtABC中,B=90,A=60,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_16如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 17在平面直角坐标系中,将点A(3,2)向右平移3个单位长度,再向下平移2个单位长度,那
6、么平移后对应的点A的坐标是_三、解答题(共7小题,满分69分)18(10分)(2013年四川绵阳12分)如图,AB是O的直径,C是半圆O上的一点,AC平分DAB,ADCD,垂足为D,AD交O于E,连接CE(1)判断CD与O的位置关系,并证明你的结论;(2)若E是的中点,O的半径为1,求图中阴影部分的面积19(5分)如图,在边长为1的小正方形组成的方格纸上,将ABC绕着点A顺时针旋转90画出旋转之后的ABC;求线段AC旋转过程中扫过的扇形的面积20(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1
7、)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位21(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米).(参考数据:cos750.2588, sin750.9659,tan753.732,) 22(
8、10分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?23(12分)先化简分式: (-),再从-3、-3、2、-2中选一个你喜欢的数作为的值代入求值24(14分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64,吊臂底部A距地面1.5m(计算结果精确
9、到0.1m,参考数据sin640.90,cos640.44,tan642.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1列出三个数的和的方程,再根据选项解出x,看是否存在解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+2
10、1=51;当x=2时,3x+21=2故任意圈出一竖列上相邻的三个数的和不可能是3故选D“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解2、A【解析】二次函数yx22(b2)xb21的图象不经过第三象限,a10,0或抛物线与x轴的交点的横坐标均大于等于0.当0时,2(b2)24(b21)0,解得b.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1x22(b2)0,2(b2)24(b21)0,无解,此种情况不存在b.3、B【解析】根据相反数的意义,只有符号不同的数为相反数【详
11、解】解:相反数等于本身的数是1故选B【点睛】本题考查了相反数的意义注意掌握只有符号不同的数为相反数,1的相反数是14、C【解析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若dr,则直线与与圆相离.【详解】x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,点O到直线l距离是方程x2-4x-12=0的一个根,即为6,点O到直线l的距离d=6,r=5,dr,直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.5、D【解析】过C点作CDAB,垂足为D,根据旋转性质可知,B=B,把求
12、tanB的问题,转化为在RtBCD中求tanB【详解】过C点作CDAB,垂足为D根据旋转性质可知,B=B在RtBCD中,tanB=,tanB=tanB=故选D【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法6、B【解析】(1)如图1,当点C在点A和点B之间时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm, MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,MB=AB=4cm,BN=BC=1cm,MN=MB+BN=5cm.综上所述,
13、线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.7、C【解析】解:,故选C.8、B【解析】试题分析:由题意知,“-”代表零下,因此-3表示气温为零下3.故选B.考点:负数的意义9、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 (66)2+(76)2+(36)2+(96)2+(56)
14、2=4,故选A点睛:此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个数方差是一组数据中各数据与它们的平均数的差的平方的平均数10、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题(共7小题,每小题3分,满分21分)11、3.3081【解析】正确用科学计数法表示即可.【详解】解:33080=3.3081【点睛】科学记数法的
15、表示形式为的形式, 其中1|a|10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.12、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CDAE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=118=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键13、或【解析】设直线y=2x-1与x轴交点为C,与y轴交点为A,过
16、点A作AD直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出BAD=ACO,再利用ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点D,如图所示直线y=2x-1与x轴交点为C,与y轴交点为A,点A(0,-1),点C(,0),OA=1,OC=,AC=,cosACO=BAD与CAO互余,ACO与CAO互余,BAD=ACOAD=3,cosBAD=,AB=3直线y=2x-b与y轴的交点为B(0,-b),AB=|-b-(-1)|=3
17、,解得:b=1-3或b=1+3故答案为1+3或1-3【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键14、【解析】试题解析:根据已知条件不能推出OA=OD,错误;AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,DE=DF,AED=AFD=90,在RtAED和RtAFD中,RtAEDRtAFD(HL),AE=AF,AD平分BAC,ADEF,正确;BAC=90,AED=AFD=90,四边形AEDF是矩形,AE=AF,四边形AEDF是正方形,正确;AE=AF,DE=DF,AE2+DF2=AF2+DE2,正确;正确,15、或【解析】
18、分析:依据DCM为直角三角形,需要分两种情况进行讨论:当CDM=90时,CDM是直角三角形;当CMD=90时,CDM是直角三角形,分别依据含30角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90时,CDM是直角三角形,在RtABC中,B=90,A=60,AC=2+4,C=30,AB=AC=+2,由折叠可得,MDN=A=60,BDN=30,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60,ANM=DNM=60,AMN=60,AN=MN=;如图,当CMD=90时,CDM是直角三角形,由题可得,CDM=60,A=MDN=60,BDN=
19、60,BND=30,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30,AH=AN=1,HN=,由折叠可得,AMN=DMN=45,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等16、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD
20、=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径O
21、C的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对
22、称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质17、(0,0)【解析】根据坐标的平移规律解答即可【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是(-3+3,2-2),即(0,0),故答案为(0,0)【点睛】此题主要考查坐标与图形变化-平移平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减三、解答题(共7小题,满分69分)18、解:(1)CD与O相切理由如
23、下:AC为DAB的平分线,DAC=BACOA=OC,OAC=OCA,DAC=OCAOCADADCD,OCCDOC是O的半径,CD与O相切(2)如图,连接EB,由AB为直径,得到AEB=90,EBCD,F为EB的中点OF为ABE的中位线OF=AE=,即CF=DE=在RtOBF中,根据勾股定理得:EF=FB=DC=E是的中点,=,AE=ECS弓形AE=S弓形ECS阴影=SDEC=【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于
24、CD,即可得证(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用19、.(1)见解析(2)【解析】(1)根据网格结构找出点B、C旋转后的对应点B、C的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)ABC如图所示:(2)由图可知,AC=2,线段AC旋转过程中扫过的扇形的面积.20、(1)(2
25、,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理21、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE
26、交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60,sinFAG=,sin60=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米考点:解直角三角形的应用22、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大【解析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价单价数量结合A、B两种文具的进价及总价,即可得出关于x
27、的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题【详解】(1)设A种文具进货x只,B种文具进货只,由题意得:,解得:x40,答:A种文具进货40只,B种文具进货60只;(2)设购进A型文具a只,则有,且;解得:,a为整数,a48、49、50,一共有三种购货方案;利润,w随a增大而减小,当a48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.23、 ;5【解析】原式=(-)
28、=a=2,原式=524、(1)11.4;(2)19.5m.【解析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH地面于H,利用直角三角形的性质和三角函数解答即可【详解】解:(1)在RtABC中,BAC=64,AC=5m,AB=50.44 11.4 (m);故答案为:11.4;(2)过点D作DH地面于H,交水平线于点E,在RtADE中,AD=20m,DAE=64,EH=1.5m,DE=sin64AD200.918(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m【点睛】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.