《广东省惠州市惠阳高级中学2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省惠州市惠阳高级中学2023年中考数学最后冲刺浓缩精华卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1|的倒数是( )A2BCD22下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b23如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子A37B42C73D1214下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边
3、形D平行四边形既是中心对称图形,又是轴对称图形5计算(ab2)3的结果是()A3ab2Ba3b6Ca3b5Da3b66根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,且它们均在轴同侧D无交点7如图,在正方形网格中建立平面直角坐标系,若,则点C的坐标为( )ABCD8如图,在RtABC中,ACB=90,点D,E分别是AB,BC的中点,点F是BD的中点若AB=10,则EF=()A2.5B3C4D59下列交通标志是中心对称图形的为()ABCD10据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)34353
4、63738人数251021则鞋子尺码的众数和中位数分别是( )A35码,35码B35码,36码C36码,35码D36码,36码11如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC3D612如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+3二、填空题:(本大题共6个小题,每小题4分,共24分)13已知圆锥的底面半径为3cm,侧面积为
5、15cm2,则这个圆锥的侧面展开图的圆心角 14一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为_cm15如果a2a10,那么代数式(a)的值是 16如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 17RtABC中,AD为斜边BC上的高,若, 则 18在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和
6、x轴上,OA1B1,B1A2B2,B2A3B3都是等腰直角三角形则A3的坐标为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,)(1)求m、n的值和反比例函数的表达式(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长20(6分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本) 若
7、每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润若每份套餐售价不超过10元试写出与的函数关系式;若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由21(6分)如图,点E,F在BC上,BECF,AD,BC,AF与DE交于点O求证:ABDC;试判断OEF的形状,并说明理由22(8分)小丁每天从某报社以每份
8、0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?23(8分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60和30,求电线杆PQ的高度(结果保留根号).24(10分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并
9、将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?25(10分)计算:-2-2 - + 026(12分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为求 x 和 y 的值27(12分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30时,判断
10、线段BE与DE之间的数量关系,并加以证明;(3)若0MAC120,当线段DE2BE时,直接写出MAC的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键2、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选
11、项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键3、C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+26=13个,第5、6图案中黑子有1+26+46=37个,第7、8图案中黑子有1+26+46+66=73个故选C点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况4、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别
12、相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法5、D【解析】根据积的乘方与幂的乘方计算可得【详解】解:(ab2)3=a3b6,故选D【点睛】本题主要考查幂的乘方与
13、积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则6、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.7、C【解析】根据A点坐标即可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础
14、题型8、A【解析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】ACB=90,D为AB中点CD=点E、F分别为BC、BD中点.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.9、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全
15、重合10、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.11、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CH
16、y轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型12、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下图,连AC,OC,BC,设CD交AB于H,CD垂直平分线段OB,COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:
17、A【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:根据圆锥的侧面积公式S=rl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数解:侧面积为15cm2,圆锥侧面积公式为:S=rl=3l=15,解得:l=5,扇形面积为15=,解得:n=1,侧面展开图的圆心角是1度故答案为1考点:圆锥的计算14、【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成其中O1EAB
18、,O1FBC,O2CBC,O3CCD,O4DCDBC与AB延长线的夹角为60,O1是圆盘在AB上滚动到与BC相切时的圆心位置,此时O1与AB和BC都相切则O1BE=O1BF=60度此时RtO1BE和RtO1BF全等,在RtO1BE中,BE=cmOO1=AB-BE=(60-)cmBF=BE=cm,O1O2=BC-BF=(40-)cmABCD,BC与水平夹角为60,BCD=120度又O2CB=O3CD=90,O2CO3=60度则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60且半径为10cm的圆弧的长=210=cm四边形O3O4DC是矩形,O3O4=CD=40cm综上所述,圆盘从A点滚动到D点,
19、其圆心经过的路线长度是:(60-)+(40-)+40=(140-+)cm15、1【解析】分析:先由a2a1=0可得a2a=1,再把(a )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2a=1代入即可.详解:a2a1=0,即a2a=1,原式= = =a(a1)=a2a=1,故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.16、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以17、【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等
20、于相似比的性质解决问题【详解】如图,CAB=90,且ADBC,ADB=90,CAB=ADB,且B=B,CABADB,(AB:BC)1=ADB:CAB,又SABC=4SABD,则SABD:SABC=1:4,AB:BC=1:118、A3()【解析】设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.【详解】设直线y=与x轴的交点为G,令y=0可解得x=-4,G点坐标为(-4,0),OG=4,如图1,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,A1B1O为
21、等腰直角三角形,A1D=OD,又点A1在直线y=x+上,=,即=,解得A1D=1=()0,A1(1,1),OB1=2,同理可得=,即=,解得A2E=()1,则OE=OB1+B1E=,A2(,),OB2=5,同理可求得A3F=()2,则OF=5+=,A3(,);故答案为(,)【点睛】本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=;(2).【解析】(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;
22、(2)设OG=x,则GD=OG=x,CG=2x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FHCB于H,易证得GCDDHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得【详解】(1)D(m,2),E(n,),AB=BD=2,m=n2,解得,D(1,2),k=2,反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2x,在RtCDG中,x2=(2x)2+12,解得x=,过F点作FHCB于H,GDF=90,CDG+FDH=90,CDG+CGD=90,CGD=FDH,GCD=FHD=90,GCDDHF,即,FD=,FG=【点睛】本题考查了反比例函数与几何
23、综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.20、(1)y=400x1(5x10);9元或10元;(2)能, 11元.【解析】(1)、根据利润=(售价进价)数量固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案【详解】解:(1)y=400(x5)2(5x10), 依题意得:400(x5)2800, 解得:x8.5,5x10,且每份套餐的售价x(元)取整数, 每份套餐的售价应不低于9元 (2)依题意可知:每份套餐售价提高
24、到10元以上时,y=(x5)40040(x10)2, 当y=1560时, (x5)40040(x10)2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意故该套餐售价应定为11元【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型理解题意,列出关系式是解决这个问题的关键21、(1)证明略(2)等腰三角形,理由略【解析】证明:(1)BECF,BEEFCFEF, 即BFCE 又AD,BC,ABFDCE(AAS), ABDC (2)OEF为等腰三角形 理由如下:ABFDCE,AFB=DECOE=OFOEF为等腰三角形2
25、2、(1)y=0.8x60(0x200)(2)159份【解析】解:(1)y=(10.5)x(0.50.2)(200x)=0.8x60(0x200)(2)根据题意得:30(0.8x60)2000,解得x小丁每天至少要买159份报纸才能保证每月收入不低于2000元(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(10.5)x(0.50.2)(200x)即y=0.8x60,其中0x200且x为整数(2)因为每月以30天计,根据题意可得30(0.8x60
26、)2000,解之求解即可23、(6+)米【解析】根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,PCA=90,PAC=45,PBC=60,QBC=30,设CQ=x,则在RtBQC中,BC=QC=x,在RtPBC中PC=BC=3x,在RtPAC中,PAC=45,则PC=AC,3x=6+x,解得x=3+,PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.24、(1)补图见解析;(2)27;(3)1
27、800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图25、【解析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案【详解】解:原
28、式=【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.26、x=15,y=1【解析】根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1【详解】依题意得,化简得,解得, .,检验当x=15,y=1时,x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这
29、些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=27、(1)补全图形如图1所示,见解析,BEC60;(2)BE2DE,见解析;(3)MAC90.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30,进而得出BCD90,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90,进而得出BCE30,得出AEC60,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC
30、,BAC60.ABAD.ABDADBy.在ABD中,2x+2y+60180,x+y60.DEMCEMx+y60.BEC60;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120,ABC60,ABDDBC30,由(1)知,BEC60,ECB90.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60,CEF是等边三角形,BEBF,CBE90,BCE30,ACE30,AEDAEC,BEC60,AEC60,MAC180AECACE90.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.