广东省东莞市中学堂镇六校2023届中考猜题数学试卷含解析.doc

上传人:lil****205 文档编号:87994107 上传时间:2023-04-19 格式:DOC 页数:18 大小:723KB
返回 下载 相关 举报
广东省东莞市中学堂镇六校2023届中考猜题数学试卷含解析.doc_第1页
第1页 / 共18页
广东省东莞市中学堂镇六校2023届中考猜题数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《广东省东莞市中学堂镇六校2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省东莞市中学堂镇六校2023届中考猜题数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D11452如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/

2、s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD23化简的结果是()A B C D4已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x22x+kb+1=0 的根的情况是( )A有两个不相等的实数根B没有实数根C有两个相等的实数根D有一个根是 05下列算式中,结果等于a5的是()Aa2+a3Ba2a3Ca5aD(a2)36将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )ABCD7一、单选题如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平

3、分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D908从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD9如图给定的是纸盒的外表面,下面能由它折叠而成的是( )ABCD10小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D358二、填空题(本大题共6个小题,每小题3分,共18分)11如图,直线交于点,

4、与轴负半轴,轴正半轴分别交于点,的延长线相交于点,则的值是_12已知三个数据3,x+3,3x的方差为,则x=_13计算:()1(5)0_14如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为 15方程1的解是_.16半径是6cm的圆内接正三角形的边长是_cm三、解答题(共8题,共72分)17(8分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值18(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF

5、,连接CF求证:FCAB19(8分)如图,直线ABCD,BC平分ABD,1=65,求2的度数.20(8分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CPCQ2,将三角板CPQ绕点C旋转(保持点P在ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系21(8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出

6、旗杆AB的高度(结果精确到0.1米,).22(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积23(12分)如图,以ABC的边AB为直径的O分别交BC、AC于F、G,且G是的中点,过点G作DEBC,垂足为E,交BA的延长线于点D(1)求证:DE是的O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长24如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称

7、,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子【详解】“如果1+190,那么11”能说明它是假命题为1145故选:D【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题

8、的关键2、C【解析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm1.AD=a.DEADa.DE=1.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a1=11+(a-1)1.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系3、C【解析】试题解析:原式=故选C.考点:二次根式的乘除法4、

9、A【解析】判断根的情况,只要看根的判别式=b24ac的值的符号就可以了【详解】一次函数y=kx+b的图像经过第一、三、四象限k0, b0,方程x22x+kb+1=0有两个不等的实数根,故选A【点睛】根的判别式5、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误故选B6、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,

10、代入得:y=(x+1)1-1所得图象的解析式为:y=(x+1)1-1;故选:B【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标7、A【解析】分析:依据AD是BC边上的高,ABC=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到DAE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+ACD=75详解:AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=75,故选A点睛:本题考查了三角形内角和定理:三角形内

11、角和为180解决问题的关键是三角形外角性质以及角平分线的定义的运用8、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比9、B【解析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、

12、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.10、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)1=1+501=1+350=2故选B.【点睛】此题考查了有理数的混合运

13、算,弄清题中的规律是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】连接,根据可得,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接,是直径,是等腰直角三角形,【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键12、1【解析】先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值【详解】解:这三个数的平均数是:(3+x+3+3-x)3=3,则方差是:(3-3)2+(x+3-3)2+(3-x-3)2=,

14、解得:x=1;故答案为:1【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立13、1【解析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式211,故答案为1【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大14、1【解析】OD=2AD,ABO=90,DCOB,ABDC,DCOABO,S四边形ABCD=10,SODC=8,OCCD=8,OCCD=1,k=1,故答案为115、x4【解析】分式方程去分母转化为整式方程,求出整式方程的解

15、得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2xx1,解得:x4,经检验x4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16、6【解析】根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可【详解】如图所示,OB=OA=6,ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是ABC的平分线;OBD=60=30,BD=cos306=6=3;根据垂径定理,BC=2BD=6,故答案为6【点睛】本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点

16、,求出内心到每个顶点的距离,可求出内接正三角形的边长三、解答题(共8题,共72分)17、,当x1时,原式1【解析】先化简分式,然后将x的值代入计算即可【详解】解:原式 . 且, x的整数有,取,当时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键18、答案见解析【解析】利用已知条件容易证明ADECFE,得出角相等,然后利用平行线的判定可以证明FCAB【详解】解:E是AC的中点,AE=CE在ADE与CFE中,AE=EC,AED=CEF,DE=EF,ADECFE(SAS),EAD=ECF,FCAB【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理通过全等得角

17、相等,然后得到两线平行时一种常用的方法,应注意掌握运用19、50.【解析】试题分析:由平行线的性质得到ABC=1=65,ABD+BDE=180,由BC平分ABD,得到ABD=2ABC=130,于是得到结论解:ABCD,ABC=1=65,BC平分ABD,ABD=2ABC=130,BDE=180ABD=50,2=BDE=50【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出ABD的度数,题目较好,难度不大20、(1)证明见解析(2) (3)EP+EQ= EC【解析】(1)由题意可得:ACP=BCQ,即可证ACPBCQ,可得 AP=CQ;作 CHPQ 于 H,由题意可求 PQ=

18、2 ,可得 CH=,根据勾股定理可求AH= ,即可求 AP 的长;作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 O,由题意可证CNP CMQ,可得 CN=CM,QM=PN,即可证 RtCEMRtCEN,EN=EM,CEM=CEN=45,则可求得 EP、EQ、EC 之间的数量关系【详解】解:(1)如图 1 中,ACB=PCQ=90,ACP=BCQ 且 AC=BC,CP=CQACPBCQ(SAS)PA=BQ如图 2 中,作 CHPQ 于 HA、P、Q 共线,PC=2,PQ=2,PC=CQ,CHPQCH=PH= 在 RtACH 中,AH= PA=AHPH= -解:结论:EP+EQ=

19、 EC理由:如图 3 中,作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 OACPBCQ,CAO=OBE,AOC=BOE,OEB=ACO=90,M=CNE=MEN=90,MCN=PCQ=90,PCN=QCM,PC=CQ,CNP=M=90,CNPCMQ(AAS),CN=CM,QM=PN,CE=CE,RtCEMRtCEN(HL),EN=EM,CEM=CEN=45EP+EQ=EN+PN+EMMQ=2EN,EC=EN,EP+EQ=EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形21、11.9米【解析】先根据锐角三角

20、函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.22、(1),;(2)P,【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx

21、+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,点A的坐标为(1,3)把点A(1,3)代入反比例函数y=,得:3=k,反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,点B的坐标为(3,1)(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示点B、D关于x轴对称,点B的坐标为(3,1),点D的坐标为(3,- 1)设直线AD的解析

22、式为y=mx+n,把A,D两点代入得:,解得:,直线AD的解析式为y=-2x+1令y=-2x+1中y=0,则-2x+1=0,解得:x=,点P的坐标为(,0)SPAB=SABD-SPBD=BD(xB-xA)-BD(xB-xP)=1-(-1)(3-1)-1-(-1)(3-)=考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题23、(1)证明见解析;(1);(3)1.【解析】(1)要证明DE是的O切线,证明OGDE即可;(1)先证明GBAEBG,即可得出=,根据已知条件即可求出BE;(3)先证明AGBCGB,得出BC=AB=6,BE=4.8再根据OGB

23、E得出=,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,G是弧AF的中点,GBF=GBA,OB=OG,OBG=OGB,GBF=OGB,OGBC,OGD=GEB,DECB,GEB=90,OGD=90,即OGDE且G为半径外端,DE为O切线;(1)AB为O直径,AGB=90,AGB=GEB,且GBA=GBE,GBAEBG,;(3)AD=1,根据SAS可知AGBCGB,则BC=AB=6,BE=4.8,OGBE,即,解得:AD=1【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.24、 (1) ;(2)

24、当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),当DBQ=90时,则BD2

25、+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3(3,2)满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(1,0)、Q3(3,2)【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁