《广东省五华县重点中学2022-2023学年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省五华县重点中学2022-2023学年中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+32利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD3设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D164从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD5下列运算结果为正数的是( )A1+(2)B1(2)C1(2)
3、D1(2)6如图,点A、B、C都在O上,若AOC=140,则B的度数是()A70B80C110D1407如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为( )A4B3C2D8若O的半径为5cm,OA=4cm,则点A与O的位置关系是( )A点A在O内B点A在O上C点A在O外D内含91903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性
4、物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年10如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx0二、填空题(共7小题,每小题3分,满分21分)11一个正多边形的一个外角为30,则它的内角和为_12如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是_13从某玉米种子中抽取6批,在同一条件下
5、进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)14不解方程,判断方程2x2+3x20的根的情况是_15规定一种新运算“*”:a*bab,则方程x*21*x的解为_16请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_17抛物线y2x2+3x+k2经过点(1,0),那么k_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,某个函数图象上任意
6、两点的坐标分别为(t,y1)和(t,y2)(其中t为常数且t0),将xt的部分沿直线yy1翻折,翻折后的图象记为G1;将xt的部分沿直线yy2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G例如:如图,当t1时,原函数yx,图象G所对应的函数关系式为y(1)当t时,原函数为yx+1,图象G与坐标轴的交点坐标是 (2)当t时,原函数为yx22x图象G所对应的函数值y随x的增大而减小时,x的取值范围是 图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由(3)对应函数yx22nx+n23(n为常数)n1时,若图象G与直线y2恰好有两个交点,求t的取
7、值范围当t2时,若图象G在n22xn21上的函数值y随x的增大而减小,直接写出n的取值范围19(5分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?20(8分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形21(10分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求证
8、:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.22(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?23(12分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)ABFDCE;四边形ABCD是矩形24(14分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角
9、形EFG的两边EF,EG分别过点B,C,F30.(1)求证:BECE(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图3),求sinEBG的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(
10、x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键2、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形
11、.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.3、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1x2= 4、B【解析】首先根据题意画出树状图,然后由树
12、状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比5、B【解析】分别根据有理数的加、减、乘、除运算法则计算可得【详解】解:A、1+(2)(21)1,结果为负数;B、1(2)1+23,结果为正数;C、1(2)122,结果为负数;D、1(2)12,结果为负数;故选B【点睛】本题主要考查有理数的
13、混合运算,熟练掌握有理数的四则运算法则是解题的关键6、C【解析】分析:作对的圆周角APC,如图,利用圆内接四边形的性质得到P=40,然后根据圆周角定理求AOC的度数详解:作对的圆周角APC,如图,P=AOC=140=70P+B=180,B=18070=110,故选:C点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半7、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,SABD的面积,再根据
14、OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=2代入得:y=,B(2, ),AC/BD/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)1,SABD= (-)1,又OAC与ABD的面积之和为,(k-1)1 (-)1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.8、A【解析】直接利用点与圆的位置关系进而得出答案【详解】解:O的半径为5cm,OA=4cm,点A与O的位置关系是:点A在O内故选A【点睛】此
15、题主要考查了点与圆的位置关系,正确点P在圆外dr,点P在圆上d=r,点P在圆内dr是解题关键9、B【解析】根据半衰期的定义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键10、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是
16、正确得出P点坐标二、填空题(共7小题,每小题3分,满分21分)11、1800【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)180=1800故答案为1800考点:多边形内角与外角12、a+b=1【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.13、12【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量
17、反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比14、有两个不相等的实数根【解析】分析:先求一元二次方程的判别式,由与0的大小关系来判断方程根的情况详解:a=2,b=3,c=2, 一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.15、【解析】根据题中的新定义化简所求方程,求出方程的解即可【详解】根据题意得:x2=1,x=,解得:x,故答案为x.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可16、y=x+
18、1【解析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题【详解】一次函数y随x的增大而减小,k0,一次函数的解析式,过点(1,0),满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可17、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.三、解答题(共7小题,满分69分)18、(1)(2,0);(2)x1或x;图象G所对应的函数有最大值为;(3);n或n【解析】(1)根据题意分别求出翻转之后
19、部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,根据图象的增减性可求出y随x的增大而减小时,x的取值范围,根据图象很容易计算出函数最大值;(3)将n1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.【详解】(1)当x时,y,当x时,翻折后函数的表
20、达式为:yx+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:yx+2,当y0时,x2,即函数与x轴交点坐标为:(2,0);同理沿x翻折后当时函数的表达式为:yx,函数与x轴交点坐标为:(0,0),因为所以舍去.故答案为:(2,0);(2)当t时,由函数为yx22x构建的新函数G的图象,如下图所示:点A、B分别是t、t的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为、1、,函数值y随x的增大而减小时,x1或x,故答案为:x1或x;函数在点A处取得最大值,x,y()22(),答:图象G所对应的函数有最大值为;(3)n1时,yx2+2x2,参考(2)中的图象知:当y2时,yx
21、2+2x22,解得:x1,若图象G与直线y2恰好有两个交点,则t1且-t,所以;函数的对称轴为:xn,令yx22nx+n230,则xn,当t2时,点A、B、C的横坐标分别为:2,n,2,当xn在y轴左侧时,(n0),此时原函数与x轴的交点坐标(n+,0)在x2的左侧,如下图所示,则函数在AB段和点C右侧,故:2xn,即:在2n22xn21n,解得:n;当xn在y轴右侧时,(n0),同理可得:n;综上:n或n【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很
22、直观的便可求得;(3)需注意图象G与直线y2恰好有两个交点,多于2个交点的要排除;根据草图和增减性,列出不等式,求解即可.19、(1)10,1;(2)【解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可【详解】解:(1)图象过点, ,解得的顶点坐标为,当时,最大=1答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元(2)函数图象的对称轴为直线,可知点关于对称轴的对称点是,又函数图象开口向下,当时,答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元
23、【点睛】本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质20、证明见解析【解析】(1)一方面RtABC中,由BAC=30可以得到AB=2BC,另一方面ABE是等边三角形,EFAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30,AB=2BC又ABE是等边三角形,E
24、FAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,AE=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60,AC=ADDAB=DAC+BAC=90EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定21、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,
25、POB=90-30=60OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD,OM=DM,四边形BOCD是菱形22、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百
26、花公园的时间为:(分钟),当时, ,得,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23、(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用“SSS”得ABFDCE(2)平行四边形的性质得到两边平行,从而B+C=180利用全等得B=C,从而得到一个直角,问题得证.【详解】(1)BE=CF,BF=BE+EF,CE=CF+EF,BF=CE四边形ABCD是平行四边形,AB=DC在ABF和DCE中,AB=DC,BF=CE,AF=DE,ABFDCE(2)ABFD
27、CE,B=C四边形ABCD是平行四边形,ABCDB+C=180B=C=90平行四边形ABCD是矩形24、(1)详见解析;(1)详见解析;1;.【解析】(1)只要证明BAECDE即可;(1)利用(1)可知EBC是等腰直角三角形,根据ASA即可证明;构建二次函数,利用二次函数的性质即可解决问题;如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=m利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,四边形ABCD是矩形,AB=DC,A=D=90,E是AD中点,AE=DE,BAECDE,BE=CE(1)解:如图1中,由(1)可知,EBC是等腰直角三角
28、形,EBC=ECB=45,ABC=BCD=90,EBM=ECN=45,MEN=BEC=90,BEM=CEN,EB=EC,BEMCEN;BEMCEN,BM=CN,设BM=CN=x,则BN=4-x,SBMN=x(4-x)=-(x-1)1+1,-0,x=1时,BMN的面积最大,最大值为1解:如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=mEG=m+m=(1+)m,SBEG=EGBN=BGEH,EH=m,在RtEBH中,sinEBH=【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,