《山西省长治市2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《山西省长治市2022-2023学年中考数学模拟预测题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ab,点B在直线b上,且ABBC,1=40,那么2的度数( )A40B50C60D902下列运算正确的是()Aa3+a3a6Ba6a2a4Ca3a5a15D(a3)4a73
2、若,则x-y的正确结果是( )ABC-5D54某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()ABCD5如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D456有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )A中位数相等 B平均数不同 CA组数据
3、方差更大 DB组数据方差更大7下列各式计算正确的是( )ABCD8若点A(1,a)和点B(4,b)在直线y2xm上,则a与b的大小关系是()AabBabCabD与m的值有关9下列事件中,必然事件是()A抛掷一枚硬币,正面朝上B打开电视,正在播放广告C体育课上,小刚跑完1000米所用时间为1分钟D袋中只有4个球,且都是红球,任意摸出一球是红球10如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A15mB25mC30m
4、D20m11已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)12已知O1与O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )A相交 B内切 C外离 D内含二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_ cm14在ABC中,点D在边BC上,BD=2CD,那么= 15如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,tan340.67)16当
5、x为_时,分式的值为117如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 18如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 _ y2.(填“”,“0时,y随x的增大而增大;当k0时,y随x的增大而减小.由-2y2.【详解】因为,点A(1,a)和点B(4,b)在直线y2xm上,-20,所以,y随x的增大而减小.因为,1b.故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.9、D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可
6、能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.10、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半11、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解
7、:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍12、A【解析】试题分析:O1和O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5345+3,根据圆心距与半径之间的数量关系可知O1与O2相交故选A考点:圆与圆的位置关系二、填空题:(本大题共6个小题,每小题4分,共24分)13、1cm【解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解
8、:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理14、【解析】首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值【详解】,=-=-,BD=2CD,=,=+=故答案为15、1【解析】试题解析:在RtABC中,sin34=AC=ABsin34=5000.56=1米.故答案为1.16、2【解析】分式的值是1的条件是,分子为1,分母不为1【详解】3x-6=1,x=2,当x=2时,2x+11当x=2时,分式的值是1故答案为2【点睛】本题考查的知识点是分式为1的条件,解题关键是注意
9、的是分母不能是1.17、1【解析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长18、【解析】分析:首先求得抛物线y=x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可详解:抛物线y=x2+2x的对称轴是x=1a=10,抛物线开口向下,123,y1y2 故答案为点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称
10、轴,掌握二次函数图象的性质解决问题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和
11、相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最
12、大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;
13、利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标20、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k=25=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=35=7.5考点:一次函数与反比例函数的综合问题.21、1+【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案详解:原式=2-1+-1+2=1+点睛:
14、此题主要考查了实数运算,正确化简各数是解题关键22、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走23、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商
15、场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100x)盏,根据题意得,30x+50(100x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(4530)x+(7050)(100x),=15x+200020x,=5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100x3x,x25,k=50,x=25时,y取得最
16、大值,为525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元考点:1一元一次方程的应用;2一次函数的应用24、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润每件的利润销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论【详
17、解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1x)239.2,解得:x10.330%,x21.7(不合题意,舍去)答:平均每次降价率为30%,才能使这件A商品的售价为39.2元(2)根据题意得:0.580(1+a%)3010(1+2a%)30000,整理得:a2+75a25000,解得:a125,a21(不合题意,舍去),80(1+a%)80(1+25%)1答:乙网店在“双十一”购物活动这天的网上标价为1元【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键25、()见表格;()折线图;()60%、之前每年增加的百分比依次
18、为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%【解析】()根据百分比的意义解答可得;()根据折线图和扇形图的特点选择即可得;()根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% 【详解】()年份20142015201620172018动车组发送旅客量 a 亿人次0.871.141.461.802.17铁路发送旅客总量 b 亿人次2.522.763.073.423.82动车组发送旅客量占比 100 34.5 %41.3 %47.6 %52.6 %56.8 %()为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进
19、行描述,故答案为折线图;()预估 2019 年春运期间动车组发送旅客量占比约为 60%,预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键26、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚
20、好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比27、(1);(2)P点坐标为, ;(3) 或或或【解析】(1)根据待
21、定系数法把A、C两点坐标代入可求得二次函数的解析式;(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分BQC=90、CBQ=90和BCQ=90三种情况,求解即可.【详解】解:(1)A(-1,0),在上,解得,二次函数的解析式为;(2)在中,令可得,解得或,且,经过、两点的直线为,设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,当时,四边形的面积最大,此时P点坐标为,四边形的最大面积为;(3),对称轴为,可设点坐标为,为直角三角形,有、和三种情况,当时,则有,即,解得或,此时点坐标为或;当时,则有,即,解得,此时点坐标为;当时,则有,即,解得,此时点坐标为;综上可知点的坐标为或或或【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.