《广东省深圳市罗湖区罗湖中学2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省深圳市罗湖区罗湖中学2023年中考试题猜想数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米A25BCD2若实数m满足,则下列对m值的估计正确的是()A2m1B1m0C0m1D1m23下列说法正确的是(
2、 )A负数没有倒数 B1的倒数是1C任何有理数都有倒数 D正数的倒数比自身小4对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,则的值为( )A-1B-11C1D115如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是ABCD6如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )AadbcBa+c+2b+dCa+b+14c+dDa+db+c7下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是
3、4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是8若a是一元二次方程x2x1=0的一个根,则求代数式a32a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元9在平面直角坐标系中,点,则点P不可能在( )A第一象限B第二象限C第三象限D第四象限10如图,在ABC中,B46,C54,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40B43C46D54二、填空题(共7小题,每小题3分,满分21分)11在某
4、一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_m12在RtABC中,A是直角,AB=2,AC=3,则BC的长为_13若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_.(写出一个即可)14分式方程的解为_15方程x-1=的解为:_16如图,在平行四边形ABCD中,ABAD,D=30,CD=4,以AB为直径的O交BC于点E,则阴影部分的面积为_17阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三
5、步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_三、解答题(共7小题,满分69分)18(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?19(5分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上
6、一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由20(8分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y
7、2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?21(10分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值22(10分)如图,在ABC中,AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B、M两点的O交BC于点G,交AB于点F,FB恰为O的直径(1)判断AE与O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求O的半径23(12分)目前节能灯
8、在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?24(14分)观察下列等式:222112+1322222+1422332+1第个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:过点B作BEAD于E设BE=xBCD=60,tanBCE,在直角ABE中,AE=,
9、AC=50米,则,解得即小岛B到公路l的距离为,故选B.2、A【解析】试题解析:,m2+2+=0,m2+2=-,方程的解可以看作是函数y=m2+2与函数y=-,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-=-=2,62,交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-=-=4,34,交点横坐标小于-1,-2m-1故选A考点:1.二次函数的图象;2.反比例函数的图象3、B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、1的倒数是1,该项正确;C、0没有
10、倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.4、B【解析】先由运算的定义,写出35=25,47=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b代入22求出值【详解】由规定的运算,35=3a+5b+c=25,4a+7b+c=28所以 解这个方程组,得所以22=a+b+c=-35-2c+24+c+c=-2故选B【点睛】本题考查了新运算、三元一次方程组的解法解决本题的关键是根据新运算的意义,正确的写出35=25,47=28,225、B【解析】
11、根据常见几何体的展开图即可得【详解】由展开图可知第一个图形是正方体的展开图,第2个图形是圆柱体的展开图,第3个图形是三棱柱的展开图,第4个图形是四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.6、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论【详解】解:依题意,得:ba+1,ca+7,da+1A、ada(a+1)1,bca+1(a+7)6,adbc,选项A符合题意;B、a+c+2a+(a+7)+22a+9,b+da+1+(a+1)2a+9,a+c+2b+d,选项B不符合题意;C、a+b+14a+(a+
12、1)+142a+15,c+da+7+(a+1)2a+15,a+b+14c+d,选项C不符合题意;D、a+da+(a+1)2a+1,b+ca+1+(a+7)2a+1,a+db+c,选项D不符合题意故选:A【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键7、B【解析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C
13、. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.8、C【解析】根据一元二次方程的解的定义即可求出答案【详解】由题意可知:a2-a-1=0,a2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=
14、2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义9、B【解析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有: ,解之得m1,点P可能在第一象限;B. 若点在第二象限,则有: ,解之得不等式组无解,点P不可能在第二象限;C. 若点在第三象限 ,则有: ,解之得m1,点P可能在第三象限;D. 若点在第四象限,则有:,解之得0m1,点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限
15、内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.10、C【解析】根据DEAB可求得CDEB解答即可【详解】解:DEAB,CDEB46,故选:C【点睛】本题主要考查平行线的性质:两直线平行,同位角相等快速解题的关键是牢记平行线的性质二、填空题(共7小题,每小题3分,满分21分)11、13【解析】根据同时同地物高与影长成比列式计算即可得解【详解】解:设旗杆高度为x米,由题意得,,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.12、 【解析】根据勾股定理解答即可【详解】在RtABC中,A是直角,AB2,AC3,BC,故答案为:【点睛】此题考查勾
16、股定理,关键是根据勾股定理解答13、-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k1,b1,随便写出一个小于1的b值即可一次函数y=2x+b(b为常数)的图象经过第二、三、四象限, k1,b1考点:一次函数图象与系数的关系14、-1【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得.【详解】两边同乘(x+2)(x-2),得:x-23x=0,解得:x=-1,检验:当x=-1时,(x+2)(x-2)0,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15、【解析】两边平方解答即可【详
17、解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为 【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验16、 【解析】【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:AEB=90,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与OBE面积的差,因为OA=OB,所以OBE的面积是ABE面积的一半,可得结论【详解】如图,连接OE、AE,AB是O的直径,AEB=90,四边形ABCD是平行四边形,AB=CD=4,B=D=30,AE=AB=2,BE=2,OA=OB=OE,B=OEB=3
18、0,BOE=120,S阴影=S扇形OBESBOE=,故答案为【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和ABE的面积是解本题的关键17、作图见解析,【解析】解:如图,点M即为所求连接AC、BC由题意知:AB=4,BC=1AB为圆的直径,ACB=90,则AM=AC=,点M表示的数为.故答案为点睛:本题主要考查作图尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理三、解答题(共7小题,满分69分)18、(1)y1;y2x24x+2;(2)5月出售每千克收益最大,最大为【解析】(1)观察图象找出点的坐标,利用待定系数法即可求出y
19、1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值【详解】解:(1)设y1kx+b,将(3,5)和(6,3)代入得,解得y1x+1设y2a(x6)2+1,把(3,4)代入得,4a(36)2+1,解得ay2(x6)2+1,即y2x24x+2(2)收益Wy1y2,x+1(x24x+2)(x5)2+,a0,当x5时,W最大值故5月出售每千克收益最大,最大为元【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法19、(1);(2)2m;(1)m=6或m=1【解析】(1)由题意抛物线的顶点C
20、(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边形PMPN是正方形,同法可得M(m2,2
21、m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+
22、2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形20、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0x10与x10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(
23、50-n),然后分0x10与x10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,b=;(2)0x10时,设y2=k2x,把(10, 800)代入得10k2=800,解得k2=80,y2=80x,x10,设y2=kx+b,把(10, 800)和(20,1440)代入得解得y2=64x+160(3)设B团有n人,则A团的人数为(50-n)当0n10时80n+48(50-n)=3040,解得n=20(不符合题意舍去)当n10时
24、,解得n=30.则50-n=20人,则A团有20人,B团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.21、原式=,把x=2代入的原式=1. 【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式= = 当x=2时,原式=122、(1)AE与O相切理由见解析.(2)2.1【解析】(1)连接OM,则OM=OB,利用平行的判定和性质得到OMBC,AMO=AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设O的半径为r,则AO=12r,利用等腰三角形的性质和解直
25、角三角形的有关知识得到AB=12,易证AOMABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与O相切理由如下:连接OM,则OM=OB,OMB=OBM,BM平分ABC,OBM=EBM,OMB=EBM,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=6,cosC=,BE=3,cosABC=,在ABE中,AEB=90,AB=12,设O的半径为r,则AO=12r,OMBC,AOMABE,=,解得:r=2.1,O的半径为2.123、甲、乙
26、两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量24、(1)522442+1;(2)(n+1)22nn2+1,证明详见解析【解析】(1)根据的规律即可得出第个等式;(2)第n个等式为(n+1)22nn2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边【详解】(1)222112+1322222+1422332+1第个等式为522442+1,故答案为:522442+1,(2)第n个等式为(n+1)22nn2+1(n+1)22nn2+2n+12nn2+1【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键