《广东省广州市广大附中2023年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省广州市广大附中2023年中考数学猜题卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD2如果零上2记作2,那么零下3记作( )A3B2C3D23如图1,在矩形ABCD中,动点E从A出发,沿ABC方向运动,当点
2、E到达点C时停止运动,过点E作EFAE交CD于点F,设点E运动路程为x,CFy,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:a3;当CF时,点E的运动路程为或或,则下列判断正确的是( )A都对B都错C对错D错对4如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A10B15C20D305如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD36在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据
3、得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.37下列实数中是无理数的是()ABCD8一个正多边形的内角和为900,那么从一点引对角线的条数是()A3B4C5D69如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD10如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则tanOBC为( )AB2CD11点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A0B1C1D7201712如图,AD,CE分别是ABC的中线和角平分线若AB=AC,CA
4、D=20,则ACE的度数是()A20B35C40D70二、填空题:(本大题共6个小题,每小题4分,共24分)13如果不等式无解,则a的取值范围是 _14如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了_结果保留根号15分解因式:=_16如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_17如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点
5、M,延长MQ交CD于点N,则CN=_18如图,在ABC中,点D、E分别在AB、AC上,且DEBC,已知AD2,DB4,DE1,则BC_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案20(6分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;(拓展探究)(2)如图(2)在RtABC中,点F为斜边BC的中点,
6、分别以AB,AC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60,得到正方形ABCD,请直接写出BD平方的值21(6分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论22(8分)如图,在ABC中,AB=AC,以AB为直径的O与BC交于点D,过点D作ABD=ADE,交AC于点
7、E(1)求证:DE为O的切线(2)若O的半径为,AD=,求CE的长23(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚“健身达人”小陈为了了解他的好友的运动情况随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(05000步)(说明:“05000”表示大于等于0,小于等于5000,下同),B(500110000步),C(1000115000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了 位好友已知A类好友人数是D类好友人数的5倍请补全条形图;扇形图中,“A”对应扇形的圆心角为 度若小陈微信朋友
8、圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?24(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积25(10分)观察下列算式: 1 3 - 22 = 3 - 4 = -1 2 4 - 32 = 8 - 9 = -13 5 - 42 = 15 - 16 = -1 (1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由26(12分
9、)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1求:(1)背水坡AB的长度(1)坝底BC的长度27(12分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列
10、表法或画树状图的方法求所抽取的两人恰好都是男生的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像
11、与系数的关系,注意用数形结合的思想解决问题。2、A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.3、A【解析】由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得ABEECF,继而根据相似三角形的性质可得y=,根据二次函数的性质可得,由此可得a=3,继而可得y=,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断【详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如图,E作EFAE,ABEECF,y=,当x=时,解得a1=3,a2=(舍
12、去),y=,当y=时,=,解得x1=,x2=,当E在AB上时,y=时,x=3=,故正确,故选A【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键4、B【解析】由三视图可知此几何体为圆锥,圆锥的底面半径为3,母线长为5,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长=圆锥的侧面展开扇形的弧长=2r=23=6,圆锥的侧面积=lr=65=15,故选B5、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60,的弧
13、长=.故选B.6、D【解析】解:A平均数为(158+160+154+158+170)5=160,正确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大7、B【解析】无理数就是无限不循环小数理解
14、无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、是分数,属于有理数;B、是无理数;C、=3,是整数,属于有理数;D、-是分数,属于有理数;故选B【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数8、B【解析】n边形的内角和可以表示成(n-2)180,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180=900,解得:n
15、=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.9、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键10、C【解析】试题分析:连结CD,可得CD为直径,在RtOCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tanCDO=,由圆周角定理得,OBC=CDO,则tanOBC=,故答案选C考点:
16、圆周角定理;锐角三角函数的定义11、B【解析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案【详解】解:由题意,得a=-4,b=1(a+b)2017=(-1)2017=-1,故选B【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键12、B【解析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40,B=ACB=(180-CAB)=70再利用角平分线定义即可得出ACE=ACB=35【详解】AD是ABC的中线,AB=AC,CAD=20,CAB=2CAD=40,B=ACB=(180-CAB)=70CE是ABC
17、的角平分线,ACE=ACB=35故选B【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出ACB=70是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【解析】将不等式组解出来,根据不等式组无解,求出a的取值范围【详解】解得,无解,a1.故答案为a1.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练的掌握解一元一次不等式组的运算法则.14、【解析】根据题意画出图形,进而利用锐角三角函数关系得出答案【详解】解:如图1所示:过点A作于点D,由题意可得:,则是等边三角形
18、,故BC,则,如图2所示:过点A作于点E,由题意可得:,则是等腰直角三角形,则,故梯子顶端离地面的高度AD下降了故答案为:【点睛】此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键15、x(x+2)(x2)【解析】试题分析:=x(x+2)(x2)故答案为x(x+2)(x2)考点:提公因式法与公式法的综合运用;因式分解16、【解析】解:如图,作DFy轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BHx轴于H,四边形ABCD是矩形,BAD=90,DAF+OAE=90,AEO+OAE=90,DAF=AEO,AB=2AD,E为AB的中点
19、,AD=AE,在ADF和EAO中,DAF=AEO,AFD=AOE=90,AD=AE,ADFEAO(AAS),DF=OA=1,AF=OE,D(1,k),AF=k1,同理;AOEBHE,ADFCBG,BH=BG=DF=OA=1,EH=CG=OE=AF=k1,OK=2(k1)+1=2k1,CK=k2,C(2k1,k2),(2k1)(k2)=1k,解得k1=,k2=,k10,k=故答案为 点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k17、1【解析】根据平行四边形定义得:DCAB,由两角对应相等可得:NQCMQA,DPCMPA,列比例式可
20、得CN的长【详解】四边形ABCD是平行四边形,DCAB,CNQ=AMQ,NCQ=MAQ,NQCMQA,同理得:DPCMPA,P、Q为对角线AC的三等分点,设CN=x,AM=1x,解得,x=1,CN=1,故答案为1【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键18、1【解析】先由DEBC,可证得ADEABC,进而可根据相似三角形得到的比例线段求得BC的长【详解】解:DEBC,ADEABC,DE:BCAD:AB,AD2,DB4,ABAD+BD6,1:BC2:6,BC1,故答案为:1【点睛】考查了相似三角形的性质和判定,关键是求出相似后
21、得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、可以求出A、B之间的距离为111.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或168【解
22、析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据RtABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出AMF=MAN=ANF=90,即可判定四边形AMFN是矩形;(3)分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60,以点A为旋转中心将正方形ABCD顺时针旋转60,分别依据旋转的性质以及勾股定理,即可得到结论【详解】(1)AB=AD,CB=CD,点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,AC垂直平分BD,故答案为AC垂
23、直平分BD;(2)四边形FMAN是矩形理由:如图2,连接AF,RtABC中,点F为斜边BC的中点,AF=CF=BF,又等腰三角形ABD 和等腰三角形ACE,AD=DB,AE=CE,由(1)可得,DFAB,EFAC,又BAC=90,AMF=MAN=ANF=90,四边形AMFN是矩形;(3)BD的平方为16+8或168分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60,如图所示:过D作DEAB,交BA的延长线于E,由旋转可得,DAD=60,EAD=30,AB=2=AD,DE=AD=,AE=,BE=2+,RtBDE中,BD2=DE2+BE2=()2+(2+)2=16+8以点A为旋转中心将正方
24、形ABCD顺时针旋转60,如图所示:过B作BFAD于F,旋转可得,DAD=60,BAD=30,AB=2=AD,BF=AB=,AF=,DF=2,RtBDF中,BD2=BF2+DF2=()2+(2-)2=168综上所述,BD平方的长度为16+8或168【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解解题时注意:有三个角是直角的四边形是矩形21、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分
25、线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键22、 (1)证明见解析;(2)CE=1【解析】(1)求出ADO+ADE=90,推DEOD,根据切线的判定推出即可;(2)求出CD,AC的长,证CDECAD,得出比例式,求出结果即可【详
26、解】(1)连接OD,AB是直径,ADB=90,ADO+BDO=90,OB=OD,BDO=ABD,ABD=ADE,ADO+ADE=90,即,ODDE,OD为半径,DE为O的切线;(2)O的半径为,AB=2OA=AC,ADB=90,ADC=90,在RtADC中,由勾股定理得:DC=5,ODE=ADC=90,ODB=ABD=ADE,EDC=ADO,OA=OD,ADO=OAD,AB=AC,ADBC,OAD=CAD,EDC=CAD,C=C,CDECAD,=,=,解得:CE=1【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.23、(1)30;(2)补图见
27、解析;120;70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;用360乘以A类别人数所占比例可得;总人数乘以样本中C、D类别人数和所占比例详解:(1)本次调查的好友人数为620%=30人,故答案为:30;(2)设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:扇形图中,“A”对应扇形的圆心角为360=120,故答案为:120;估计大约6月1日这天行走的步数超过10000步的好友人数为150=70人点睛:此题主要考
28、查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据24、(1)矩形的周长为4m;(2)矩形的面积为1【解析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形的周长为:2(m-n)+(m+n)=4m;(2)矩形的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=1【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数
29、式解答25、;答案不唯一.如; .【解析】(1)根据的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立利用整式的混合运算方法加以证明26、(1)背水坡的长度为米;(1)坝底的长度为116米.【解析】(1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【详解】(1)分别过点、作,垂足分别为点、,根据题意,可知(米),(米) 在中,(米), ,(米). 答:背水坡的长度为米(1)在中, (米),(米) 答:坝底的长度为116米.【点睛】本题考查的知识点是解
30、直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.27、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解【详解】(1)1020%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图