《成都青羊区四校联考2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《成都青羊区四校联考2022-2023学年中考适应性考试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )ABCD2下列计算,正确的是()ABC3D3如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋
2、转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)4点M(1,2)关于y轴对称点的坐标为()A(1,2)B(1,2)C(1,2)D(2,1)5要使式子有意义,x的取值范围是()Ax1Bx0Cx1且0Dx1且x06将某不等式组的解集表示在数轴上,下列表示正确的是( )ABCD7下图是由八个相同的小正方体组合而成的几何体,其左视图是( )ABCD8如图,等腰直角三角形纸片ABC中,C=90,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()CDE=DFB
3、;BDCE;BC=CD;DCE与BDF的周长相等A1个B2个C3个D4个9已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )A取时的函数值小于0B取时的函数值大于0C取时的函数值等于0D取时函数值与0的大小关系不确定10如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)11如图,A、B、C、D四个点均在O上,AOD=50,AODC,则B的度数为()A50 B55 C60 D6512下列计算,正确的是()Aa2a2=2a2Ba2+a2=a4C(a2)2=a4D(a+1)2=a
4、2+1二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x、y的二元一次方程组的解满足xy0,则m的取值范围是_14若不等式组 的解集是x4,则m的取值范围是_15化简二次根式的正确结果是_16如图,在RtABC中,C=90,A=30,BC=2,C的半径为1,点P是斜边AB上的点,过点P作C的一条切线PQ(点Q是切点),则线段PQ的最小值为_17方程3x(x-1)=2(x-1)的根是 18点(1,2)关于坐标原点 O 的对称点坐标是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解不等式组20(6分)某数学教师为了解所教班级学生完成数
5、学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:()该教师调查的总人数为 ,图中的m值为 ;()求样本中分数值的平均数、众数和中位数21(6分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:
6、(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由22(8分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示P
7、M的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由23(8分)如图,一次函数yx5的图象与反比例函数y (k0)在第一象限的图象交于A(1,n)和B两点求反比例函数的解析式;在第一象限内,当一次函数yx5的值大于反比例函数y (k0)的值时,写出自变量x的取值范围24(10分)计算:(2)2+2018025(10分)(1)计算: ; (2)解不等式组 :26(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动甲网店销售的A
8、商品的成本为30元/件,网上标价为80元/件“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购
9、物活动这天的网上标价27(12分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C2、B【解析】根据二次根式的加减法则,以及二
10、次根式的性质逐项判断即可【详解】解:=2,选项A不正确;=2,选项B正确;3=2,选项C不正确;+=3,选项D不正确故选B【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变3、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的
11、次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一循环;20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型4、A【解析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(1,2)【点睛】本题考查
12、关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.5、D【解析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解【详解】根据题意得:,解得:x-1且x1故选:D【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数6、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“”表示,大于向右小于向左点睛:不等式组的解集为1x,向右画; ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表
13、示解集时“”,“”要用实心圆点表示;“”要用空心圆点表示.7、B【解析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1故选B8、D【解析】等腰直角三角形纸片ABC中,C=90,A=B=45,由折叠可得,EDF=A=45,CDE+BDF=135,DFB+B=135,CDE=DFB,故正确;由折叠可得,DE=AE=3,CD=,BD=BCDC=41,BDCE,故正确;BC=4,CD=4,BC=CD,故正确;AC=BC=4,C=90,AB=4,DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+
14、(42)=4+2,DCE与BDF的周长相等,故正确;故选D点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等9、B【解析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:抛物线的对称轴x=,设抛物线与x轴交于点A、B,AB1,x取m时,其相应的函数值小于0,观察图象可知,x=m-1在点A的左侧,x=m-1时,y0,故选B【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想10、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD
15、的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.11、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50,则DOC=80,则AOC=130,根据同弧所对的圆周角等于圆心
16、角度数的一半可得:B=1302=65.考点:圆的基本性质12、C【解析】解:A.故错误;B. 故错误;C.正确;D.故选C【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、m-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y0即可得到关于m的不等式,求得m的范围【详解】解:,+得1x+1y1m+4,则x+ym+1,根据题意得m+10,解得m1故答案是:m1【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得
17、到关于m的不等式14、m1【解析】不等式组的解集是x1,m1,故答案为m115、a【解析】 , . .16、 【解析】当PCAB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2CQ2,先求出CP的长,然后由勾股定理即可求得答案【详解】连接CP、CQ;如图所示:PQ是C的切线,CQPQ,CQP=90,根据勾股定理得:PQ2=CP2CQ2,当PCAB时,线段PQ最短在RtACB中,A=30,BC=2,AB=2BC=4,AC=2,CP=,PQ=,PQ的最小值是故答案为:【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PCAB时,线段PQ最短是关键17、x1=
18、1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程-因式分解法.18、(-1,2)【解析】根据两个点关于原点对称时,它们的坐标符号相反可得答案【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2)【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可
19、【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键20、()25、40;()平均数为68.2分,众数为75分,中位数为75分【解析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】()该教师调查的总人数为(2+3)20%=25(人),m%=100%=40%,即m=40,故答案为:25、40;()由条形图知95分的有5人、75分的有10人、60分的有6人、30分的
20、有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即75分【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.21、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)
21、分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3
22、,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,P
23、Q=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度22、(1)抛物线的解析式为;(2)PM=(0m3);(3)存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形【解析】(1)将
24、A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:PFCAEM,CFPAEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状【详解】解:(1)抛物线(a0)经过点A(3,0),点C(0,4),解得抛物线的
25、解析式为(2)设直线AC的解析式为y=kx+b,A(3,0),点C(0,4),解得直线AC的解析式为点M的横坐标为m,点M在AC上,M点的坐标为(m,)点P的横坐标为m,点P在抛物线上,点P的坐标为(m,)PM=PEME=()()=PM=(0m3)(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:由题意,可得AE=3m,EM=,CF=m,PF=,若以P、C、F为顶点的三角形和AEM相似,分两种情况:若PFCAEM,则PF:AE=FC:EM,即():(3m)=m:(),m0且m3,m=PFCAEM,PCF=AMEAME=C
26、MF,PCF=CMF在直角CMF中,CMF+MCF=90,PCF+MCF=90,即PCM=90PCM为直角三角形若CFPAEM,则CF:AE=PF:EM,即m:(3m)=():(),m0且m3,m=1CFPAEM,CPF=AMEAME=CMF,CPF=CMFCP=CMPCM为等腰三角形综上所述,存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形23、(1);(2)1x1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数yx5的值大于反比例函数y,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可【详解】解:(1)一
27、次函数y=x+5的图象过点A(1,n),n=1+5,解得:n=1,点A的坐标为(1,1)反比例函数y=(k0)过点A(1,1),k=11=1,反比例函数的解析式为y=联立,解得:或,点B的坐标为(1,1)(2)观察函数图象,发现:当1x1.时,反比例函数图象在一次函数图象下方,当一次函数y=x+5的值大于反比例函数y=(k0)的值时,x的取值范围为1x1【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式
28、本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键24、1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可详解:原式=4+1-6=-1点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质25、(1);(2)【解析】(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.【详解】(1)解:原式= (2)解不等式,得 . 解不等式,得 . 原不等式组的解集为【点睛】本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.26、(1)平
29、均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润每件的利润销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1x)239.2,解得:x10.330%,x21.7(不合题意,舍去)答:平均每次降价率为30%,才能
30、使这件A商品的售价为39.2元(2)根据题意得:0.580(1+a%)3010(1+2a%)30000,整理得:a2+75a25000,解得:a125,a21(不合题意,舍去),80(1+a%)80(1+25%)1答:乙网店在“双十一”购物活动这天的网上标价为1元【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键27、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函
31、数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式