《广西百色市德保县重点名校2023年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《广西百色市德保县重点名校2023年中考数学全真模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1要使式子有意义,x的取值范围是()Ax1Bx0Cx1且0Dx1且x02函数y=中,x的取值范围是()Ax0Bx2Cx2Dx23如图所示,从O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知A=26,则ACB的度数为( )A32B30C26D134某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B从一副扑克牌中任意抽取一张,这张牌是“红色的”C掷一枚质地均匀的硬币
3、,落地时结果是“正面朝上”D掷一个质地均匀的正六面体骰子,落地时面朝上的点数是65已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,46如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D307函数yax2与yax+b的图象可能是()ABCD8魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576
4、时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D9如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A10B9C8D710对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则ACD的周长为 cm12如图,某数学
5、兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_13正八边形的中心角为_度14如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm15若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_三角形16如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是_三、解答题(共8题,共72分)17(8分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径
6、作半圆,分别交直线于两点.已知: ,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值. 18(8分)如图,在O中,弦AB与弦CD相交于点G,OACD于点E,过点B的直线与CD的延长线交于点F,ACBF(1)若FGB=FBG,求证:BF是O的切线;(2)若tanF=,CD=a,请用a表示O的半径;(3)求证:GF2GB2=DFGF19(8分)计算: ()2 - 8sin6020(8分)某中学九年级甲、乙两班商定
7、举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时? 21(8分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他
8、沿着与直线AB平行的道路EF行走,走到点C处,测得ACF=45,再向前走300米到点D处,测得BDF=60若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)22(10分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3、4月每个月生产成本的下降率都相同求每个月生产成本的下降率;请你预测4月份该公司的生产成本23(12分)如图,抛物线y=ax22ax+c(a0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0)(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK
9、+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ当CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)问:是否存在这样的直线l,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由24小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至
10、少要买多少份报纸才能保证每月收入不低于2000元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解【详解】根据题意得:,解得:x-1且x1故选:D【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数2、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键3、A【解析】连接OB,根据切线的性质和直角三角形的两锐角互余求得AOB=64,再由等腰三角形的性质可得C=OBC,
11、根据三角形外角的性质即可求得ACB的度数.【详解】连接OB,AB与O相切于点B,OBA=90,A=26,AOB=90-26=64,OB=OC,C=OBC,AOB=C+OBC=2C,C=32.故选A.【点睛】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键4、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P0.16,计算四个选项的概率,约为0.16者即为正确答案【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为0.670.16,故A选项不符合题意,
12、从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为0.480.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.50.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.5、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.6、C【解析】试题分析:根据勾股定理即可得到
13、AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理7、B【解析】选项中,由图可知:在,;在,所以A错误;选项中,由图可知:在,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.8、C【解析】连接O
14、C、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键9、D【解析】分析:先根据多边形的内角和公式(n2)180求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360求出完成这一圆环需要的正五边形的个数,然后减去3即可得解详解:五边形的内角和为(52)1
15、80=540,正五边形的每一个内角为5405=18,如图,延长正五边形的两边相交于点O,则1=360183=360324=36,36036=1已经有3个五边形,13=7,即完成这一圆环还需7个五边形 故选D 点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形10、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样
16、调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查二、填空题(本大题共6个小题,每小题3分,共18分)11、8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,ACD的周长=AD+CD+AC=AB+AC,解答出即可解:DE是BC的垂直平分线,BD=CD,AB=AD+BD=AD+CD,ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分
17、线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等12、25【解析】试题解析:由题意 13、45【解析】运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45.【点睛】本题考查了正n边形中心角的计算.14、2.1【解析】根据勾股定理求出AC,根据矩形性质得出ABC=90,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】四边形ABCD是矩形,ABC=90,BD=AC,BO=OD,AB=6cm,BC=8cm,由勾股定理得:BD=AC=10(cm),DO=1cm,点E、F分别是AO、AD的中点,EF=
18、OD=2.1cm,故答案为2.1【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.15、直角三角形【解析】根据题意,画出图形,用垂直平分线的性质解答【详解】点O落在AB边上,连接CO,OD是AC的垂直平分线,OC=OA,同理OC=OB,OA=OB=OC,A、B、C都落在以O为圆心,以AB为直径的圆周上,C是直角这个三角形是直角三角形【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.16、11【解析】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据勾股定理求出DE,根据折叠的性质可知B
19、E=BE=1,即可求出BD【详解】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据折叠的性质,EBFEBF,EBBF,EB=EB,E是AB边的中点,AB=4,AE=EB=1,AD=6,DE=,BD=11【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B在何位置时,BD的值最小是解题的关键三、解答题(共8题,共72分)17、(1);(2);(3)或【解析】(1)如图2,连接OP,则DF与半圆相切,利用OPDFCD(AAS),可得:OD=DF=30;(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,
20、即可求解;(3)设PG=GH=m,则:,求出,利用,即可求解.【详解】(1)如图,连接与半圆相切,在矩形中,根据勾股定理,得在和中,(2)如图,当点与点重合时,过点作与点,则且,由(1)知:,当与半圆相切时,由(1)知:,(3)设半圆与矩形对角线交于点P、H,过点O作OGDF,则PG=GH,则,设:PG=GH=m,则:,整理得:25m2-640m+1216=0,解得:,.【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键18、(1)证明见解析;(2);(3)证明见解析【解析】(1)根据等边对等角
21、可得OAB=OBA,然后根据OACD得到OAB+AGC=90,从而推出FBG+OBA=90,从而得到OBFB,再根据切线的定义证明即可(2)根据两直线平行,内错角相等可得ACF=F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得DBG=ACF,然后求出DBG=F,从而求出BDG和FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证【详解】解:(1)证明:OA=OB,OAB=OBAOACD,OAB+AGC=90又FGB=FBG,FGB=AGC,FB
22、G+OBA=90,即OBF=90OBFBAB是O的弦,点B在O上BF是O的切线 (2)ACBF,ACF=FCD=a,OACD,CE=CD=atanF=,即解得连接OC,设圆的半径为r,则,在RtOCE中,即,解得(3)证明:连接BD,DBG=ACF,ACF=F(已证),DBG=F又FGB=FGB,BDGFBG,即GB2=DGGFGF2GB2=GF2DGGF=GF(GFDG)=GFDF,即GF2GB2=DFGF19、4 - 2【解析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=24- 8= 24
23、- 4=4 - 220、(1)y1=4x,y2=-5x+1(2)km(3)h【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=.当x=时,y2=5+1=,相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+
24、5x=6,解得x=h.甲、乙两班首次相距4千米时所用时间是h.21、215.6米【解析】过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据RtACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在RtACM中,AM=CM=200米,又CD=300米,所以米,在RtBDN中,BDF=60,BN=200米米,米即A,B两点之间的距离约为215.6米【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.22、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342
25、.95万元【解析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本(1下降率),即可得出结论【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去)答:每个月生产成本的下降率为5%;(2)361(15%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量
26、关系,列式计算23、(1)y=;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)【解析】试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;(1)可求得点C关于x轴的对称点C的坐标,连接CN交x轴于点K,再求得直线CK的解析式,可求得K点坐标;(2)过点E作EGx轴于点G,设Q(m,0),可表示出AB、BQ,再证明BQEBAC,可表示出EG,可得出CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐
27、标即可试题解析:(1)抛物线经过点C(0,4),A(4,0),解得 ,抛物线解析式为y= x1+x+4;(1)由(1)可求得抛物线顶点为N(1, ),如图1,作点C关于x轴的对称点C(0,4),连接CN交x轴于点K,则K点即为所求,设直线CN的解析式为y=kx+b,把C、N点坐标代入可得 ,解得 ,直线CN的解析式为y=x-4 ,令y=0,解得x= ,点K的坐标为(,0);(2)设点Q(m,0),过点E作EGx轴于点G,如图1,由 x1+x+4=0,得x1=1,x1=4,点B的坐标为(1,0),AB=6,BQ=m+1,又QEAC,BQEBAC, ,即 ,解得EG= ;SCQE=SCBQSEBQ
28、=(CO-EG)BQ=(m+1)(4-)= =-(m-1)1+2 又1m4,当m=1时,SCQE有最大值2,此时Q(1,0);(4)存在在ODF中,()若DO=DF,A(4,0),D(1,0),AD=OD=DF=1又在RtAOC中,OA=OC=4,OAC=45DFA=OAC=45ADF=90此时,点F的坐标为(1,1)由 x1+x+4=1,得x1=1+ ,x1=1此时,点P的坐标为:P1(1+,1)或P1(1,1);()若FO=FD,过点F作FMx轴于点M由等腰三角形的性质得:OM=OD=1,AM=2在等腰直角AMF中,MF=AM=2F(1,2)由 x1+x+4=2,得x1=1+,x1=1此时
29、,点P的坐标为:P2(1+,2)或P4(1,2);()若OD=OF,OA=OC=4,且AOC=90AC=4点O到AC的距离为1而OF=OD=11,与OF1矛盾在AC上不存在点使得OF=OD=1此时,不存在这样的直线l,使得ODF是等腰三角形综上所述,存在这样的直线l,使得ODF是等腰三角形所求点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.24、(1)y=0.8x60(0x200)(2)159份【解析】解:(1)y=(10.5)x(0.50.2)(200x)=0.8x60(0x200)(2)根据题意得:30(0.8x60)2000,解得x小丁每天至少要买159份报纸才能保证每月收入不低于2000元(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(10.5)x(0.50.2)(200x)即y=0.8x60,其中0x200且x为整数(2)因为每月以30天计,根据题意可得30(0.8x60)2000,解之求解即可