《广东省韶关市乳源县2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省韶关市乳源县2022-2023学年中考数学仿真试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果(x2)(x3)=x2pxq,那么p、q的值是( )Ap=5,q=6Bp=1,q=6Cp=1,q=6Dp=5,q=62某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁
2、丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A甲种方案所用铁丝最长B乙种方案所用铁丝最长C丙种方案所用铁丝最长D三种方案所用铁丝一样长:3如图所示,在平面直角坐标系中,抛物线y=x22x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OPAP的最小值为( ).A3BCD4如图,一艘海轮位于灯塔P的南偏东70方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40的N处,则N处与灯塔P的 距离为A40海里B60海里C70海里D80海里5工人师傅用一张半径为24cm,圆心角为150的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()c
3、mABCD6把不等式组的解集表示在数轴上,下列选项正确的是()ABCD7如图,把ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MNAB,则点O是ABC的( )A外心B内心C三条中线的交点D三条高的交点8在下列二次函数中,其图象的对称轴为的是ABCD9将抛物线y2x2向左平移3个单位得到的抛物线的解析式是( )Ay2x2+3By2x23Cy2(x+3)2Dy2(x3)210如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD11下列
4、运算正确的是()A(a2)3=a5B(a-b)2=a2-b2C3=3D=-312据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A25和30B25和29C28和30D28和29二、填空题:(本大题共6个小题,每小题4分,共24分)13图中是两个全等的正五边形,则=_14如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则
5、AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 15我国古代数学著作九章算术卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少?设有人,则可列方程为_16如图,在平面直角坐标系中,抛物线可通过平移变换向_得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是_17已知关于x的方程x22x+n=1没有实数根,那么|2n|1n|的化简结果是_18已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值
6、为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简再求值:(1),其中x20(6分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F求证:DF是BF和CF的比例中项;在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF21(6分)在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件
7、下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 22(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000
8、件,已知A型学习用品的单价为20元,B型学习用品的单价为30元若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?24(10分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点
9、E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标25(10分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把BAD沿直线BD折叠,点A的对应点为A(1)若点A落在矩形的对角线OB上时,OA的长= ;(2)若点A落在边AB的垂直平分线上时,求点D的坐标;(3)若点A落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可)26(12分)问题提出(1)如图,在矩形ABCD中,AB=2AD,E为CD的中点,则AEB ACB(填“”“”“=”);问题探究(2)如图,在正方形ABCD中,P为CD边上的
10、一个动点,当点P位于何处时,APB最大?并说明理由;问题解决(3)如图,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图中找到点P的位置,并计算此时小刚与大楼AD之间的距离27(12分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数
11、参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值【详解】解:(x-2)(x+3)=x2+x-1,又(x-2)(x+3)=x2+px+q,x2+px+q=x2+x-1,p=1,q=-1故选:B【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加两个多项式相等时,它们同类项的系数对应相等2、D【解析】试题分析:解:由图形可得出
12、:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长故选D考点:生活中的平移现象3、A【解析】连接AO,AB,PB,作PHOA于H,BCAO于C,解方程得到x22x=0得到点B,再利用配方法得到点A,得到OA的长度,判断AOB为等边三角形,然后利用OAP=30得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PHOA于H,BCAO于C,如图当y=0时x22x=0,得x1=0,x2=2,所以B(2,0),由于y=x22x=-(x-)2+3,所以A(,3),所以AB=A
13、O=2,AO=AB=OB,所以三角形AOB为等边三角形,OAP=30得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OPAP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.4、D【解析】分析:依题意,知MN40海里/小时2小时80海里,根据方向角的意义和平行的性质,M70,N40,根据三角形内角和定理得MPN70MMPN70NPNM80海里故选D5、B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高详解:由题意可
14、得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2r=,解得:r=10,故这个圆锥的高为:(cm)故选B点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键6、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为x1故选C【点睛】本题考查了不等式问题,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示7、B【解析】利用平行线间的距离相等,可知点到、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知: , ,图中的点是三角形三个内角的平分线的交点,点是
15、的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.8、A【解析】y=(x+2)2的对称轴为x=2,A正确;y=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A19、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y2x2向左平移3个单位得到的抛物线的解析式是y2(x3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.10、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此
16、类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键11、D【解析】试题分析:A、原式=a6,错误;B、原式=a22ab+b2,错误;C、原式不能合并,错误;D、原式=3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式12、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30
17、,处于最中间是数是28,这组数据的中位数是28,在这组数据中,29出现的次数最多,这组数据的众数是29,故选D【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分)13、108【解析】先求出正五边形各个内角的度数,再求出BCD和BDC的度数,求出CBD,即可求出答案【详解】如图:图中是两个全等的正五边形,BC=BD,BCD=BDC,图中是两个全等的正五边形,正五边形每个内角的度数是=1
18、08,BCD=BDC=180-108=72,CBD=180-72-72=36,=360-36-108-108=108,故答案为108【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键14、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间
19、,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFD
20、E,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定
21、;4相似三角形的判定与性质15、【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有人,列出方程: 故答案为【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程16、先向右平移2个单位再向下平移2个单位; 4 【解析】.平移后顶点坐标是(2,-2),利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.17、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-41(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=1没有实数根,
22、b2-4ac=(-2)2-41(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.18、-10【解析】根据根与系数的关系得出-2+4=-m,-24=n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】分析:根据分式的减
23、法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题详解:原式= =当时,原式=点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法20、证明见解析【解析】试题分析:(1)根据已知求得BDF=BCD,再根据BFD=DFC,证明BFDDFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明AEGADC,得到AEG=ADC=90,从而得EGBC,继而得 ,由(1)可得 ,从而得 ,问题得证.试题解析:(1)ACB=90,BCD+ACD=90,CD是RtABC的高,ADC=BDC=90,A+ACD=90,A=BCD,E是AC的中点,DE=AE=CE,A
24、=EDA,ACD=EDC,EDC+BDF=180-BDC=90,BDF=BCD,又BFD=DFC,BFDDFC,BF:DF=DF:FC,DF2=BFCF;(2)AEAC=EDDF, ,又A=A,AEGADC,AEG=ADC=90,EGBC, ,由(1)知DFDDFC, , ,EGCF=EDDF.21、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)
25、同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,ABC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,ABDACE,ACE=ABD=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=
26、CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD22、(1)每行驶1千米纯用电的费用为0.26元(2)至少需用电行驶74千米【解析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:=解得:x=0.
27、26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(y)(0.26+0.50)39解得:y74,即至少用电行驶74千米23、(1)购买A型学习用品400件,B型学习用品600件(2)最多购买B型学习用品1件【解析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论(2)设最多可以购买B型产品a件,则A型产品(1000a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可【详解】解:(1)设购买A型
28、学习用品x件,B型学习用品y件,由题意,得,解得:答:购买A型学习用品400件,B型学习用品600件(2)设最多可以购买B型产品a件,则A型产品(1000a)件,由题意,得20(1000a)+30a210,解得:a1答:最多购买B型学习用品1件24、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径
29、为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,B
30、C=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直
31、径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC
32、,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=
33、,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性25、(1)1;(2)点D(82,0);(3)点D的坐标为(31,0)或(31,0)【解析】分析:()由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA=1,据此可得答案; ()连接AA,利用折叠的性质和中垂线
34、的性质证BAA是等边三角形,可得ABD=ABD=30,据此知AD=ABtanABD=2,继而可得答案; ()分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得详解:()如图1,由题意知OA=8、AB=1,OB=10,由折叠知,BA=BA=1,OA=1 故答案为1; ()如图2,连接AA点A落在线段AB的中垂线上,BA=AA BDA是由BDA折叠得到的,BDABDA,ABD=ABD,AB=AB,AB=AB=AA,BAA是等边三角形,ABA=10,ABD=ABD=30,AD=ABtanABD=1tan30=2,OD=OAAD=82,点D(82,0); ()如图3,
35、当点D在OA上时 由旋转知BDABDA,BA=BA=1,BAD=BAD=90 点A在线段OA的中垂线上,BM=AN=OA=4,AM=2,AN=MNAM=ABAM=12,由BMA=AND=BAD=90知BMAAND,则=,即=,解得:DN=35,则OD=ON+DN=4+35=31,D(31,0); 如图4,当点D在AO延长线上时,过点A作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知BDABDA,BA=BA=1,BAD=BAD=90 点A在线段OA的中垂线上,AM=AN=MN=4,则MC=BN=2,MO=MC+OC=2+1,由EMA=ANB=B
36、AD=90知EMAANB,则=,即=,解得:ME=,则OE=MOME=1+ DOE=AME=90、OED=MEA,DOEAME,=,即=,解得:DO=3+1,则点D的坐标为(31,0) 综上,点D的坐标为(31,0)或(31,0)点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点26、(1);(2)当点P位于CD的中点时,APB最大,理由见解析;(3)4米【解析】(1)过点E作EFAB于点F,由矩形的性质和等腰三角形的判定得到:AEF是等腰直角三角形,易证AEB=90,而ACB90,由此可以比较AEB与ACB的大小(2)
37、假设P为CD的中点,作APB的外接圆O,则此时CD切O于P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE、BF;由AFB是EFB的外角,得AFBAEB,且AFB与APB均为O中弧AB所对的角,则AFB=APB,即可判断APB与AEB的大小关系,即可得点P位于何处时,APB最大;(3)过点E作CEDF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)AEBACB,理由如下:如图1,过点E作EFAB于点F
38、,在矩形ABCD中,AB=2AD,E为CD中点,四边形ADEF是正方形,AEF=45,同理,BEF=45,AEB=90而在直角ABC中,ABC=90,ACB90,AEBACB故答案为:;(2)当点P位于CD的中点时,APB最大,理由如下:假设P为CD的中点,如图2,作APB的外接圆O,则此时CD切O于点P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE,BF,AFB是EFB的外角,AFBAEB,AFB=APB,APBAEB,故点P位于CD的中点时,APB最大:(3)如图3,过点E作CEDF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以
39、点O为圆心,OA长为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,OA=CQ=BD+QBCD=BD+ABCD,BD=11.6米, AB=3米,CD=EF=1.6米,OA=11.6+31.6=13米,DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.27、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人
40、数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)410%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键