《广西贵港市桂平市重点达标名校2023届中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《广西贵港市桂平市重点达标名校2023届中考数学最后冲刺模拟试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算的正确结果是()AB-C1D12若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD3如图是一块带有圆形空
2、洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体4如图,ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A相切B相交C相离D无法确定5下列安全标志图中,是中心对称图形的是( )ABCD6已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )Ak2且k1Bk2且k1Ck=2Dk=2或17如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x0)与AB相交于点D,与BC相交于点E,若BD=
3、3AD,且ODE的面积是9,则k的值是( )AB CD128如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D9某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD10如图,AB是O的弦,半径OCAB于点D,若O的半径为5,AB=8,则CD的长是( )A2 B3 C4 D511计算()1的结果是()ABC2D212甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,则在本次测试中,成绩更稳定的同学是()A甲B乙C甲乙同样稳定D无法确定二、填空题
4、:(本大题共6个小题,每小题4分,共24分)13某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 _元。14如图,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点 B,则OAC 与BAD 的面积之差 SOACSBAD 为_.15如图,O的直径CD垂直于AB,AOC=48,则BDC=度16如图,ABCD中,E是BA的中点,连接DE,将DAE沿DE折叠,使点A落在ABCD内部的点F处若CBF25,则FDA的度数为_17某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯
5、的概率为_18的相反数是_,的倒数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为
6、腰的等腰三角形时,直接写出t的值20(6分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上21(6分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,PAB=38.1,PBA=26.1请帮助小张求出小桥PD的长并确定小桥在小道上的位置(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.1=0.62,cos38.1=0.78,tan38.1=0.80,sin26.1=0.41,cos26.1=0.89,tan26.1=
7、0.10)22(8分)计算:(2)0+4cos30|23(8分)如图,已知反比例函数y=(x0)的图象与一次函数y=x+4的图象交于A和B(6,n)两点求k和n的值;若点C(x,y)也在反比例函数y=(x0)的图象上,求当2x6时,函数值y的取值范围24(10分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)25(10分)如图,AB为O的直径,C为O上一点,AD和过点C的
8、切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积26(12分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30,求证:DG=DA;(3)若A=30,且图中阴影部分的面积等于2,求O的半径的长27(12分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF判断AF与O的位置关系并说明理由;若O的半径
9、为4,AF=3,求AC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数2、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二
10、次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0x2,若a0,则x0x1x2或x1x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)(x0-x2)0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确3、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识
11、来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难4、B【解析】首先过点A作AMBC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系【详解】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=2.1D、E分别是AC、AB的中点,DEBC,DE=BC=2.5,AN=MN=AM,MN=1.2以DE为直径的圆半径为1.25,r=1.251.2,以DE为直径的圆与B
12、C的位置关系是:相交故选B【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键5、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形6、D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+10时,函数为二次函数,根据条件可知其判别式为0,可求得k的值【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-10,即k1时,由函数与x轴只有一个交点可知,=(-4)2-
13、4(k-1)4=0,解得k=2,综上可知k的值为1或2,故选D【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况7、C【解析】设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据SODE=S矩形OCBA-SAOD-SOCE-SBDE= 9求出k.【详解】四边形OCBA是矩形,AB=OC,OA=BC,设B点的坐标为(a,b),BD=3AD,D(,b),点D,E在反比例函数的图象上,=k,E(a,),SODE=S矩形OCBA-SAOD-SOCE-SBDE=ab- -(b-)=
14、9,k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.8、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.9、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同
15、一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比10、A【解析】试题分析:已知AB是O的弦,半径OCAB于点D,由垂径定理可得AD=BD=4,在RtADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.11、D【解析】根据负整数指数幂与正整数指数幂互为倒数,可得答案【详解】解: ,故选D【点睛】本题考查了
16、负整数指数幂,负整数指数幂与正整数指数幂互为倒数12、A【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=1.4,S乙2=2.5,S甲2S乙2,甲、乙两名同学成绩更稳定的是甲;故选A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定二、填空题:(本大题共6个小题,每小题4分,共24分)13、500【解析】设该品牌时装的进价
17、为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:100090%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.14、【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设OAC和BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)点B在反比例函数y=在第一象限的图象上,(a+b)(a-b)=a2-b2=3SO
18、ACSBAD=a2-b2=【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.15、20【解析】解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40,BDC=AOC=40=2016、50【解析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明BCGDAE,从而7=6=25,进而可求FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, 1=2, 7=8,3=4.1+2=3+4,1=2=3=4,CDAB,3=5,1=5,在BCG和DAE中1=5,C=A,BC=AD,BCGDAE,7=6=25,
19、8=7=25,FDA=50.故答案为50.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明BCGDAE是解答本题的关键.17、【解析】随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可【详解】抬头看信号灯时,是绿灯的概率为故答案为:【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数(2)P(必然事件)=1(3)P(不可能事件)=218、2,【解析】试题分析:根据相反数
20、和倒数的定义分别进行求解,2的相反数是2,2的倒数是.考点:倒数;相反数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根
21、据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30,cos30=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30,cos30=,t=;综上所述,当点P在AB边上运
22、动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30,AP=8t,AGP=90,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30,AP=8t,AGP=90,PG=4t,AG=4t,由AQ=2AG得:4t
23、=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.20、见解析【解析】先连接AC,根据菱形性质证明EACFCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.四边形ABCD是菱形,DA=DC,BD与AC互相垂直平分,EAC=FCA. AE=CF,AC=CA, EACFCA, ECA=FAC, GA=GC, 点G在
24、AC的中垂线上,点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.21、49.2米【解析】设PD=x米,在RtPAD中表示出AD,在RtPDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置【详解】解:设PD=x米,PDAB,ADP=BDP=90在RtPAD中,在RtPBD中,又AB=80.0米,解得:x24.6,即PD24.6米DB=2x=49.2米答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米22、1【解析】分析:按照实数的运算顺序进行运算即可.详解:原式 =1 点睛
25、:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.23、(1)n=1,k=1(2)当2x1时,1y2【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=10结合反比例函数的性质,即可求出:当2x1时,1y2【详解】(1)当x=1时,n=1+4=1,点B的坐标为(1,1)反比例函数y=过点B(1,1),k=11=1;(2)k=10,当x0时,y随x值增大而减小,当2x1时,1y2【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数
26、的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.24、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4
27、.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算25、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接
28、OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式26、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接
29、OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90,即可得到结论;(1)根据含30的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90,根据三角形的内角和得到EOD=60,求得EGO=30,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90,A+B=90,AEO+BEF=90,OEG=90,EF是O的切线;(1)AED=90,A=30,ED=AD,A+B=90,B=BEF=60,BEF+DEG=90,DEG=30,ADE+A=90,ADE=60,ADE=EGD+DEG,DGE=3
30、0,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90,A=30,EOD=60,EGO=30,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键27、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90AF为圆O的切线,即AF与O的位置关系是相切(2)
31、AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90,证出OAF=90,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90,OFBC,AEO=90,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90,OAF=90,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,34=1AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质