《广西壮族自治区桂平市市级名校2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广西壮族自治区桂平市市级名校2023届中考五模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1中国在第二十三届冬奥会闭幕式上奉献了2022相约北京的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A8.1106B8.1105C81105D811042如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过A
2、BC区域(包括边界),则a的取值范围是()A或B或C或D3对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点4估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和45古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+316如图,在直角坐标系中,等腰直角ABO的O点是
3、坐标原点,A的坐标是(4,0),直角顶点B在第二象限,等腰直角BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()Ay=2x+1By=x+2Cy=3x2Dy=x+27两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )A无法求出B8C8D168已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A4个B5个C6个D7个9如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同时开始运动,设
4、运动时间为t(s),BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=1101t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD10下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点将ADO沿直
5、线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_12已知二次函数,与的部分对应值如下表所示:-10123461-2-3-2m下面有四个论断:抛物线的顶点为;关于的方程的解为;其中,正确的有_13在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_14圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_15如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 16若代数式的值为零,则x=_三、解答题(共8题,共72分)17(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张
6、牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率18(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(4,6)、(1,4);请在图中的网格平面内建立平面直角坐标系;请画出ABC关于x轴对称的A1B1C1;请在y轴上求作一点P,使PB1C的周长最小,并直接写出点P的坐标.19(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“
7、”表示被污损的数据)请解答下列问题:成绩分组频数频率50x6080.1660x7012a70x800.580x9030.0690x100bc合计1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率20(8分)如图,一次函数y=x2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C(1)求二次函数的关系式及点C的坐标;(2)如图,若点P是直线AB上方的抛物线上一点,过点P作P
8、Dx轴交AB于点D,PEy轴交AB于点E,求PD+PE的最大值;(3)如图,若点M在抛物线的对称轴上,且AMB=ACB,求出所有满足条件的点M的坐标21(8分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边
9、形是平行四边形,求P点的坐标22(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 的面积为 23(12分)如图,已知ABCD作B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若ABCD的周长为10,CD=2,求DE的长。24如图,已知AB为O的直径,AC是O的弦,D是弧BC的中点,过点D作O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD(1)求证:A2BDF;(2)若AC3,AB5,求CE的长参考答案一、选择题(
10、共10小题,每小题3分,共30分)1、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】810 000=8.11故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经
11、过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.3、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.4、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,3
12、22故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键5、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分
13、发生了变化,是按照什么规律变化的6、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式【详解】当BC与x轴平行时,过B作BEx轴,过D作DFx轴,交BC于点G,如图1所示等腰直角ABO的O点是坐标原点,A的坐标是(4,0),AO=4,BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,D坐标为(1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1
14、),设所求直线解析式为y=kx+b(k0),将两点坐标代入得:,解得:则这条直线解析式为y=x+1故选D【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键7、D【解析】试题分析:设AB于小圆切于点C,连接OC,OBAB于小圆切于点C,OCAB,BC=AC=AB=8=4cm圆环(阴影)的面积=OB2-OC2=(OB2-OC2)又直角OBC中,OB2=OC2+BC2圆环(阴影)的面积=OB2-OC2=(OB2-OC2)=BC2=16故选D考点:1垂径定理的应用;2切线的性质8、A【解析】依据不等式组至
15、少有两个整数解,即可得到a5,再根据存在以3,a,7为边的三角形,可得4a10,进而得出a的取值范围是5a10,即可得到a的整数解有4个【详解】解:解不等式,可得xa,解不等式,可得x4,不等式组至少有两个整数解,a5,又存在以3,a,7为边的三角形,4a10,a的取值范围是5a10,a的整数解有4个,故选:A【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了9、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的
16、相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边上时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛
17、】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想10、B【解析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、-12【解析】过E点作EFOC于F,如图所示:由条件可知:OE=OA=5,所以EF=3,OF=4,则E点坐标为(-4,3)设
18、反比例函数的解析式是y,则有k=-43=-12.故答案是:-12.12、【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数yax2+bx+c(a0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;抛物线yax2+bx+c(a0)的顶点为(2,-3),结论正确;b24ac0,结论错误,应该是b24ac0;关于x的方程ax2+bx+c2的解为x11,x23,结论正确;m3,结论错误,其中,正
19、确的有. 故答案为:【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.13、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解14、15p【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算15、11.【解析】试题解析:由折线统计图可知,周一的日温差=8+1=9;周二的日温差=7+1=8;周三的日温差=8+1=
20、9;周四的日温差=9;周五的日温差=135=8;周六的日温差=1571=8;周日的日温差=165=11,这7天中最大的日温差是11考点:1.有理数大小比较;2.有理数的减法16、3【解析】由题意得,=0,解得:x=3,经检验的x=3是原方程的根三、解答题(共8题,共72分)17、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,
21、掌握列表法是解题的关键.18、(1)(2)见解析;(3)P(0,2)【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,则点P即为所求设直线B1C的解析式为y=kx+b(k0),B1(2,-2),C(1,4),解得:,直线AB2的解析式为:y=2x+2,当x=0时,y=2,P(0,2) 点睛:本题主要考查轴对称图形的绘制和轴对称的应用.19、(1)a=0.24,b=2,c=0.04;(2
22、)600人;(3)人. 【解析】(1)利用50x60的频数和频率,根据公式:频率频数总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:80.16=50(名)a=1250=0.24,70x80的人数为:500.5=25(名)b=50812253=2(名)c=250=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的
23、频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:10000.6=600(人)这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,抽取的2名同学来自同一组的概率P=【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树
24、形图法适合两步或两步以上完成的事件;概率所求情况数与总情况数之比20、(1)二次函数的关系式为y;C(1,0);(2)当m2时,PDPE有最大值3;(3)点M的坐标为(,)或(,)【解析】(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明PDEOAB,得到PD2PE设P(m,),则E(m,),PDPE3PE,然后配方即可得到结论(3)分两种情况讨论:当点M在在直线AB上方时,则点M在ABC的外接圆上,如图1求出圆心O1的坐标和半径,利用MO1=半径即可得到结论当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2求出点O2的坐标,算出
25、DM的长,即可得到结论【详解】解:(1)令y0,得:x4,A(4,0)令x0,得:y2,B(0,2)二次函数y的图像经过A、B两点,解得:,二次函数的关系式为y令y0,解得:x1或x4,C(1,0)(2)PDx轴,PEy轴,PDEOAB,PEDOBA,PDEOAB2,PD2PE设P(m,),则E(m,)PDPE3PE3()()0m4,当m2时,PDPE有最大值3(3)当点M在在直线AB上方时,则点M在ABC的外接圆上,如图1ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,t),解得:t2,圆心O1的坐标为(,2),半径为设M(,y)MO1=,解得:y=,点M的坐标为()当点M在在直线
26、AB下方时,作O1关于AB的对称点O2,如图2AO1O1B,O1ABO1BAO1Bx轴,O1BAOAB,O1ABOAB,O2在x轴上,点O2的坐标为 (,0),O2D1,DM,点M的坐标为(,)综上所述:点M的坐标为(,)或(,)点睛:本题是二次函数的综合题考查了求二次函数的解析式,求二次函数的最值,圆的有关性质难度比较大,解答第(3)问的关键是求出ABC外接圆的圆心坐标21、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标
27、求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c=0 由解得:a=,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OBFH=4(+t+4)=+2t+8 OFC的面积=OCFG=2t四边形ABFC的面积=AOC的面积+OBF的面积+OFC的面积=+4t+
28、12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用22、(1)见解析;(2)见解析;(3);(4)4.【解析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)根据点在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:;(4) .【点睛】此题主要考查了作图轴对称变换,关键是确定组成图形的关键点的对称点位置23、(1)作图见解析;(2)1【解析】(1)以点B为圆心,任意长为半径
29、画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得AEB=EBC,利用角平分线即得ABE=EBC,即证 AEB=ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:平行四边形ABCD的周长为10AB+AD=5AD/BCAEB=EBC又BE平分ABCABE=EBCAEB=ABEAB=AE=2ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则24、(1)见解析
30、;(2)1【解析】(1)连接AD,如图,利用圆周角定理得ADB=90,利用切线的性质得ODDF,则根据等角的余角相等得到BDF=ODA,所以OAD=BDF,然后证明COD=OAD得到CAB=2BDF;(2)连接BC交OD于H,如图,利用垂径定理得到ODBC,则CH=BH,于是可判断OH为ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1【详解】(1)证明:连接AD,如图,AB为O的直径,ADB90,EF为切线,ODDF,BDFODB90,ODAODB90,BDFODA,OAOD,OADODA,OADBDF,D是弧BC的中点,CODOAD,CAB2BDF;(2)解:连接BC交OD于H,如图,D是弧BC的中点,ODBC,CHBH,OH为ABC的中位线,HD2.51.51,AB为O的直径,ACB90,四边形DHCE为矩形,CEDH1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理