《广西壮族自治区梧州市岑溪市2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《广西壮族自治区梧州市岑溪市2022-2023学年中考押题数学预测卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D52在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P
2、2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去,设Pn(xn,yn),n1,2,3,则x1+x2+x2018+x2019的值为()A1B3C1D20193已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A6 B7 C11 D124一个正多边形的内角和为900,那么从一点引对角线的条数是()A3B4C5D65已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )A1 B2 C1 D26随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD7函数y和y在第一象限内的图象如图,点P是y的图
3、象上一动点,PCx轴于点C,交y的图象于点B给出如下结论:ODB与OCA的面积相等;PA与PB始终相等;四边形PAOB的面积大小不会发生变化;CAAP其中所有正确结论的序号是()ABCD8如图,将一块含有30角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果1=30,那么2的度数为( )A30B40C50D609已知,且,则的值为( )A2或12B2或C或12D或10不等式组的解集在数轴上表示为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,直线yk1xb与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1xb的解集是12计算:()0=_13如图所示,平
4、行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 _条件,可以判定四边形AECF是平行四边形(填一个符合要求的条件即可)14 “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费若设参加游览的同学一共有x人,为求x,可列方程_15用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_16某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料甲、乙两种
5、产品每袋的成本价分别为袋中两种原料的成本价之和若甲产品每袋售价72元,则利润率为20%某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_元三、解答题(共8题,共72分)17(8分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号、,摆成如图所示的一个等式,然后翻开纸片是4x1+5x+6,翻开纸片是3x1x1解答下列问题求纸片上的代数式;若x是方程1xx9的解,求纸片上代数式
6、的值18(8分)已知关于x的一元二次方程x2(m+3)x+m+2=1(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值19(8分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长20(8分)如图,已知抛物线y=ax22ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D(
7、1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由21(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(7)0+|1|+()1+(1)2018,经询问,王老师告诉题目的正确答案是1(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(15),其中为三角形一内角,求的值22(10分)如图1,正方
8、形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F(1)求证:GBEGEF(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围(3)如图2,连接AC交GF于点Q,交EF于点P当AGQ与CEP相似,求线段AG的长 23(12分)如图,已知ABCD作B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若ABCD的周长为10,CD=2,求DE的长。24在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并
9、直接写出、坐标;(2)若,如图2,当时,求的值;如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】四边形ABCD是正方形,A=B=90,AGE+AEG=90,BFE+FEB=90,GEF=90,GEA+FEB=90,AGE=FEB,AEG=EFB,AEGBFE,又AE=BE,AE2=AGBF=2,AE=(舍负),GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明AEGBFE2、C【解析】根据
10、各点横坐标数据得出规律,进而得出x +x +x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,1,1,3,3,3,3,5;x1+x2+x71x1+x2+x3+x4111+32;x5+x6+x7+x8333+52;x97+x98+x99+x1002x1+x2+x20162(20164)1而x2017、x2018、x2019的值分别为:1009、1009、1009,x2017+x2018+x20191009,x1+x2+x2018+x2019110091,
11、故选C【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律3、C【解析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值【详解】x+2y=5,2x+4y=10,则2x+4y+1=10+1=1故选C【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型4、B【解析】n边形的内角和可以表示成(n-2)180,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180=900,解得:n=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【
12、点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.5、C【解析】把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,m+n=-1,m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.6、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机
13、事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.7、C【解析】解:A、B是反比函数上的点,SOBD=SOAC=,故正确;当P的横纵坐标相等时PA=PB,故错误;P是的图象上一动点,S矩形PDOC=4,S四边形PAOB=S矩形PDOCSODBSOAC=4=3,故正确;连接OP,=4,AC=PC,PA=PC,=3,AC=AP;故正确;综上所述,正确的结论有故选C点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键8、D【解析】如图,因为,1=30,1+3=60,所以3=30,因为ADBC,所以3=4,所以4=3
14、0,所以2=180-90-30=60,故选D.9、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.10、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解不等式得,x1;解不等式得,x2;不等式组的解集为:x2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2x1或x1【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质不等式k1xb的解集即k1xb的解集,
15、根据不等式与直线和双曲线解析式的关系,可以理解为直线yk1xb在双曲线下方的自变量x的取值范围即可而直线yk1xb的图象可以由yk1xb向下平移2b个单位得到,如图所示根据函数图象的对称性可得:直线yk1xb和yk1xb与双曲线的交点坐标关于原点对称由关于原点对称的坐标点性质,直线yk1xb图象与双曲线图象交点A、B的横坐标为A、B两点横坐标的相反数,即为1,2由图知,当2x1或x1时,直线yk1xb图象在双曲线图象下方不等式k1xb的解集是2x1或x112、-1【解析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:()0=121.【点睛】熟练运用零次幂的运算法则
16、、立方根的运算法则是本题解题的关键.13、BE=DF【解析】可以添加的条件有BE=DF等;证明:四边形ABCD是平行四边形,AB=CD,ABD=CDB;又BE=DF,ABECDF(SAS).AE=CF,AEB=CFD.AEF=CFE.AECF;四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF14、 =1【解析】原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:=1故答案是:=115、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.16、5750【解析】根
17、据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn20n250,最后设生产甲乙产品的实际成本为W元,即可解答【详解】甲产品每袋售价72元,则利润率为20%设甲产品的成本价格为b元, 20%,b60,甲产品的成本价格60元,1.5kgA原料与1.5kgB原料的成本和60元,A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40x)元,生产甲产品m袋,乙产品n袋,根据题意得: ,xn20n250,设生产甲乙产品的实际成本为W元,则有W60m+40n+
18、xn,W60m+40n+20n25060(m+n)250,m+n100,W6250;生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格三、解答题(共8题,共72分)17、(1)7x1+4x+4;(1)55.【解析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1x1)即可求得纸片上的代数式;(1)先解方程1xx9,再代入纸片的代数式即可求解.【详解】解:(1)纸片上的代数式为:(4x1+5x+6)+(3x1x1)4x1+5x+6+3x1-x-17x1+4x+4(1)解方程:1xx9,解得x3代入纸片
19、上的代数式得7x1+4x+47(-3)+4(-3)+463-11+455即纸片上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则特别是对于含括号的运算,在去括号时,一定要注意符号的变化18、(1)证明见解析;(2)m 的值为1或2【解析】(1)计算根的判别式的值可得(m+1)21,由此即可证得结论;(2)根据题意得到 x=2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可【详解】(1)证明:=(m+3)22(m+2)=(m+1)21,无论实数 m 取何值,方程总有两个实数根;(2)解:方程
20、有一个根的平方等于 2,x=2 是原方程的根,当 x=2 时,22(m+3)+m+2=1解得m=1;当 x=2 时,2+2(m+3)+m+2=1,解得m=2综上所述,m 的值为 1 或2【点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点19、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点
21、,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算20、(1)y=x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0).【解析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式(2)求出点C关于对称轴的对称点,求出两点
22、间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标(1)此题要分三种情况讨论:点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得
23、点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;M、N在x轴下方,且以N为直角顶点时,方法同【详解】解:(1)由y=ax22ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(1,0);OC=1OA,C(0,1);依题意有:,解得;y=x2+2x+1(2)存在DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),C(0,1),P(2,1),CP=2,D(1,4),CD=2,由此时CDPD,根据垂线段最短可得,PC不可能与CD相等;PC=PD时,CP22=(1y)2+x2,DP22=(x1)2+(4y)2(1y)2+x2=(x1)2+(4y)2将
24、y=x2+2x+1代入可得:, ;P2(,)综上所述,P(2,1)或(,)(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0);若Q是直角顶点,由对称性可直接得Q1(1,0);若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x1),MN=2Q1O2=2(1x),Q2MN为等腰直角三角形;y=2(1x)即x2+2x+1=2(1x);x1,Q2(,0);由对称性可得Q1(,0);若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x1)Q1Q4=1x,而Q4N=2(Q1Q4),y为负,y=2(1x),(x2+2x+1)=2(1x),x1,x=
25、,Q4(-,0);由对称性可得Q5(+2,0)【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.21、(1)2;(2)75【解析】(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值计算得出答案【详解】解:(1)原式1+1+11,1+1+112;(2)为三角形一内角,0180,15(15)165,2tan(15),1560,75【点睛】此题主要考查了实数运算,正确化简各数是解题关键22、(1)见解析;(2)y=4x+(0x3);(3)当AGQ与CEP相似,线段AG的长为2或4【解析】(1)先判断出BEFCE
26、F,得出BF=CF,EF=EF,进而得出BGE=EGF,即可得出结论;(2)先判断出BEGCFE进而得出CF=,即可得出结论;(3)分两种情况,AGQCEP时,判断出BGE=60,即可求出BG;AGQCPE时,判断出EGAC,进而得出BEGBCA即可得出BG,即可得出结论【详解】(1)如图1,延长FE交AB的延长线于F,点E是BC的中点,BE=CE=2,四边形ABCD是正方形,ABCD,F=CFE,在BEF和CEF中,BEFCEF,BF=CF,EF=EF,GEF=90,GF=GF,BGE=EGF,GBE=GEF=90,GBEGEF;(2)FEG=90,BEG+CEF=90,BEG+BGE=90
27、,BGE=CEF,EBG=C=90,BEGCFE,由(1)知,BE=CE=2,AG=x,BG=4x,CF=,由(1)知,BF=CF=,由(1)知,GF=GF=y,y=GF=BG+BF=4x+当CF=4时,即:=4,x=3,(0x3),即:y关于x的函数表达式为y=4x+(0x3);(3)AC是正方形ABCD的对角线,BAC=BCA=45,AGQ与CEP相似,AGQCEP,AGQ=CEP,由(2)知,CEP=BGE,AGQ=BGE,由(1)知,BGE=FGE,AGQ=BGQ=FGE,AGQ+BGQ+FGE=180,BGE=60,BEG=30,在RtBEG中,BE=2,BG=,AG=ABBG=4,
28、AGQCPE,AQG=CEP,CEP=BGE=FGE,AQG=FGE,EGAC,BEGBCA,BG=2,AG=ABBG=2,即:当AGQ与CEP相似,线段AG的长为2或4【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.23、(1)作图见解析;(2)1【解析】(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得AEB=EBC,利用角平分线即得ABE=EBC,即证 AEB=ABE .根据等角对等
29、边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:平行四边形ABCD的周长为10AB+AD=5AD/BCAEB=EBC又BE平分ABCABE=EBCAEB=ABEAB=AE=2ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则24、(1)作图见解析,;(2)k=6;【解析】(1)根据题意,画出对应的图形,根据旋转的性质可得,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得();根据等角对等边可得,可列方程(),然后联立方程即可求出点D
30、的坐标,从而求出k的值;用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令=0即可求出m的值,从而求出k的值【详解】解:(1)点 , ,如图1,由旋转知,点在轴正半轴上,点在轴负半轴上,;(2)过点作轴于,过点作轴于,过点作于,设,点,在双曲线上,(),(),联立()()解得:,;如图3,直线的解析式为(),双曲线(),联立()()得:,即:,直线与双曲线有唯一公共点,(舍或,故答案为:【点睛】此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键